
www.manaraa.com

Self-Seuring Storage:Proteting Data in Compromised SystemsJohn D. Strunk, Garth R. Goodson, Mihael L. Sheinholtz, Craig A.N. SoulesGregory R. GangerCarnegie Mellon UniversityAbstratSelf-seuring storage prevents intruders from unde-tetably tampering with or permanently deletingstored data. To aomplish this, self-seuring stor-age devies internally audit all requests and keepold versions of data for a window of time, regard-less of the ommands reeived from potentially om-promised host operating systems. Within the win-dow, system administrators have this valuable in-formation for intrusion diagnosis and reovery. Ourimplementation, alled S4, ombines log-struturingwith journal-based metadata to minimize the per-formane osts of omprehensive versioning. Exper-iments show that self-seuring storage devies andeliver performane that is omparable with onven-tional storage systems. In addition, analyses indi-ate that several weeks worth of all versions an rea-sonably be kept on state-of-the-art disks, espeiallywhen di�erening and ompression tehnologies areemployed.1 IntrodutionDespite the best e�orts of system designers and im-plementors, it has proven diÆult to prevent om-puter seurity breahes. This fat is of growing im-portane as organizations �nd themselves inreas-ingly dependent on wide-area networking (providingmore potential soures of intrusions) and omputer-maintained information (raising the signi�ane ofpotential damage). A suessful intruder an obtainthe rights and identity of a legitimate user or admin-istrator. With these rights, it is possible to disruptthe system by aessing, modifying, or destroyingritial data.Even after an intrusion has been deteted and termi-nated, system administrators still fae two diÆulttasks: determining the damage aused by the intru-sion and restoring the system to a safe state. Dam-age inludes ompromised serets, reation of bakdoors and Trojan horses, and tainting of stored data.Deteting eah of these is made diÆult by rafty in-truders who understand how to srub audit logs and

disrupt automated tamper detetion systems. Sys-tem restoration involves identifying a lean bakup(i.e., one reated prior to the intrusion), reinitializ-ing the system, and restoring information from thebakup. Suh restoration often requires a signi�-ant amount of time, redues the availability of theoriginal system, and frequently auses loss of datareated between the safe bakup and the intrusion.Self-seuring storage o�ers a partial solution to theseproblems by preventing intruders from undetetablytampering with or permanently deleting stored data.Sine intruders an take the identity of real users andeven the host OS, any resoure ontrolled by the op-erating system is vulnerable, inluding the raw stor-age. Rather than ating as slaves to host OSes, self-seuring storage devies view them, and their users,as questionable entities for whih they work. Theseself-ontained, self-ontrolled devies internally ver-sion all data and audit all requests for a guaranteedamount of time (e.g., a week or a month), thus pro-viding system administrators time to detet intru-sions. For intrusions deteted within this window,all of the version and audit information is availablefor analysis and reovery. The ritial di�erene be-tween self-seuring storage and host-ontrolled ver-sioning (e.g., Elephant [29℄) is that intruders an nolonger bypass the versioning software by ompromis-ing omplex OSes or their poorly-proteted user a-ounts. Instead, intruders must ompromise single-purpose devies that export only a simple storageinterfae, and in some on�gurations, they may haveto ompromise both.This paper desribes self-seuring storage and ourimplementation of a self-seuring storage server,alled S4. A number of hallenges arise when stor-age devies distrust their lients. Most importantly,it may be diÆult to keep all versions of all data foran extended period of time, and it is not aeptableto trust the lient to speify what is important tokeep. Fortunately, storage densities inrease fasterthan most omputer harateristis (100%+ per an-num in reent years). Analysis of reent workloadstudies [29, 34℄ suggests that it is possible to ver-

www.manaraa.com

sion all data on modern 30{100GB drives for severalweeks. Further, aggressive ompression and ross-version di�erening tehniques an extend the intru-sion detetion window o�ered by self-seuring stor-age devies. Other hallenges inlude eÆiently en-oding the many metadata hanges, ahieving seureadministrative ontrol, and dealing with denial-of-servie attaks.The S4 system addresses these hallenges with anew storage management struture. Spei�ally, S4uses a log-strutured objet system for data ver-sions and a novel journal-based struture for meta-data versions. In addition to reduing spae utiliza-tion, journal-based metadata simpli�es bakgroundompation and reorganization for bloks sharedaross many versions. Experiments with S4 showthat the seurity and data survivability bene�ts ofself-seuring storage an be realized with reason-able performane. Spei�ally, the performane ofS4-enhaned NFS is omparable to FreeBSD's NFSfor both miro-benhmarks and appliation benh-marks. The fundamental osts assoiated with self-seuring storage degrade performane by less than13% relative to similar systems that provide no dataprotetion guarantees.The remainder of this paper is organized as follows.Setion 2 disusses intrusion survival and reoverydiÆulties in greater detail. Setion 3 desribes howself-seuring storage addresses these issues, identi-�es some hallenges inherent to self-seuring storage,and disusses design solutions for addressing them.Setion 4 desribes the implementation of S4. Se-tion 5 evaluates the performane and apaity over-heads of self-seuring storage. Setion 6 disussesa number of issues related to self-seuring storage.Setion 7 disusses related work. Setion 8 summa-rizes this paper's ontributions.2 Intrusion Diagnosis and ReoveryUpon gaining aess to a system, an intruder hasseveral avenues of mishief. Most intruders attemptto destroy evidene of their presene by erasing ormodifying system log �les. Many intruders also in-stall bak doors in the system, allowing them to gainaess at will in the future. They may also installother software, read and modify sensitive �les, oruse the system as a platform for launhing addi-tional attaks. Depending on the skill with whihthe intruders hide their presene, there will be somedetetion lateny before the intrusion is disoveredby an automated intrusion detetion system (IDS)or by a suspiious user or administrator. During this

time, the intruders an ontinue their maliious a-tivities while users ontinue to use the system, thusentangling legitimate hanges with those of the in-truders. One an intrusion has been deteted anddisontinued, the system administrator is left withtwo diÆult tasks: diagnosis and reovery.Diagnosis is hallenging beause intruders an usu-ally ompromise the \administrator" aount onmost operating systems, giving them full ontrolover all resoures. In partiular, this gives themthe ability to manipulate everything stored on thesystem's disks, inluding audit logs, �le modi�a-tion times, and tamper detetion utilities. Reov-ery is diÆult beause diagnosis is diÆult and be-ause user-onveniene is an important issue. Thissetion disusses intrusion diagnosis and reovery ingreater detail, and the next setion desribes howself-seuring storage addresses them.2.1 DiagnosisIntrusion diagnosis onsists of three phases: detet-ing the intrusion, disovering what weaknesses wereexploited (for future prevention), and determiningwhat the intruder did. All are diÆult when theintruder has free reign over storage and the OS.Without the ability to protet storage from ompro-mised operating systems, intrusion detetion maybe limited to alert users and system administratorsnotiing odd behavior. Examining the system logsis the most ommon approah to intrusion dete-tion [7℄, but when intruders an manipulate the log�les, suh an approah is not useful. Some intrusiondetetion systems also look for hanges to importantsystem �les [16℄. Suh systems are vulnerable to in-truders that an hange what the IDS thinks is a\safe" opy.Determining how an intruder ompromised the sys-tem is often impossible in onventional systems, be-ause he will srub the system logs. In addition,any exploit tools (utilities for ompromising om-puter systems) that may have been stored on thetarget mahine for use in multi-stage intrusions areusually deleted. The ommon \solutions" are to tryto ath the intruder in the at or to hope that heforgot to delete his exploit tools.The last step in diagnosing an intrusion is to disoverwhat was aessed and modi�ed by the intruder.This is diÆult, beause �le aess and modi�a-tion times an be hanged and system log �les anbe dotored. In addition, heksum databases areof limited use, sine they are e�etive only for stati�les.

www.manaraa.com

2.2 ReoveryBeause it is usually not possible to diagnose anintruder's ativities, full system reovery generallyrequires that the ompromised mahine be wipedlean and reinstalled from srath. Prior to erasingthe entire state of the system, users may insist thatdata, modi�ed sine the intrusion, be saved. Themore e�ort that went into reating the hanges, themore motivation there is to keep this data. Unfortu-nately, as the size and omplexity of the data grows,the likelihood that tampering will go unnotied in-reases. Foolproof assessment of the modi�ed datais very diÆult, and overlooked tampering may hidetainted information or a bak door inserted by theintruder.Upon restoring the OS and any appliations on thesystem, the administrator must identify a bakupthat was made prior to the intrusion; the most re-ent bakup may not be usable. After restoring datafrom a pre-intrusion bakup, the legitimately mod-i�ed data an be restored to the system, and usersmay resume using the system. This proess oftentakes a onsiderable amount of time|time duringwhih users are denied servie.
3 Self-Seuring StorageSelf-seuring storage ensures information survivaland auditing of all aesses by establishing a seu-rity perimeter around the storage devie. Conven-tional storage devies are slaves to host operatingsystems, relying on them to protet users' data. Aself-seuring storage devie operates as an indepen-dent entity, tasked with the responsibility of not onlystoring data, but proteting it. This shift of stor-age seurity funtionality into the storage devie's�rmware allows data and audit information to besafeguarded in the presene of �le server and lientsystem intrusions. Even if the OSes of these sys-tems are ompromised and an intruder is able toissue ommands diretly to the self-seuring storagedevie, the new seurity perimeter remains intat.Behind the seurity perimeter, the storage devieensures data survival by keeping previous versionsof the data. This history pool of old data versions,ombined with the audit log of aesses, an be usedto diagnose and reover from intrusions. This se-tion disusses the bene�ts of self-seuring storageand several ore design issues that arise in realizingthis type of devie.

3.1 Enabling intrusion survivalSelf-seuring storage assists in intrusion reovery byallowing the administrator to view audit informationand quikly restore modi�ed or deleted �les. Theaudit and version information also helps to diagnoseintrusions and detet the propagation of maliiouslymodi�ed data.Self-seuring storage simpli�es detetion of an in-trusion sine versioned system logs annot be im-pereptibly altered. In addition, modi�ed systemexeutables are easily notied. Beause of this, self-seuring storage makes onventional tamper dete-tion systems obsolete.Sine the administrator has the omplete piture ofthe system's state, from intrusion until disovery, itis onsiderably easier to establish the method usedto gain entry. For instane, the system logs wouldhave normally been dotored, but by examining theversioned opies of the logs, the administrator ansee any messages that were generated during the in-trusion and later removed. In addition, any exploittools temporarily stored on the system an be reov-ered.Previous versions of system �les, from before theintrusion, an be quikly and easily restored by res-urreting them from the history pool. This preventsthe need for a omplete re-installation of the operat-ing system, and it does not rely on having a reentbakup or up-to-date heksums (for tamper dete-tion) of system �les. After suh restoration, ritialdata an be inrementally reovered from the historypool. Additionally, by utilizing the storage devie'saudit log, it is possible to assess whih data mighthave been diretly a�eted by the intruder.The data protetion that self-seuring storage pro-vides allows easy detetion of modi�ations, sele-tive reovery of tampered �les, prevention of dataloss due to out-of-date bakups, and speedy reov-ery sine data need not be loaded from an o�-linearhive.3.2 Devie seurity perimeterThe devie's seurity model is what makes the abil-ity to keep old versions more than just a user on-veniene. The seurity perimeter onsists of self-ontained software that exports only a simple stor-age interfae to the outside world and veri�es eahommand's integrity before proessing it. In on-trast, most �le servers and lient mahines run amultitude of servies that are suseptible to attak.Sine the self-seuring storage devie is a single-

www.manaraa.com

funtion devie, the task of making it seure is muheasier; ompromising its �rmware is analogous tobreaking into an IDE or SCSI disk.The atual protool used to ommuniate with thestorage devie does not a�et the data integrity thatthe new seurity perimeter provides. The hoie ofprotool does, however, a�et the usefulness of theaudit log in terms of the ations it an reord and itsorretness. For instane, the NFS protool providesno authentiation or integrity guarantees, thereforethe audit log may not be able to aurately linka request with its originating lient. Nonetheless,the priniples of self-seuring storage apply equallyto \enhaned" disk drives, network-attahed storageservers, and �le servers.For network-attahed storage devies (as opposed todevies attahed diretly to a single host system),the new seurity perimeter beomes more useful ifthe devie an verify eah aess as oming fromboth a valid user and a valid lient. Suh veri�ationallows the devie to enfore aess ontrol deisionsand partially trak propagation of tainted data. Iflients and users are authentiated, aesses an betraked to a single lient mahine, and the devie'saudit log an yield the sope of diret damage fromthe intrusion of a given mahine or user aount.3.3 History pool managementThe old versions of objets kept by the devie om-prise the history pool. Every time an objet ismodi�ed or deleted, the version that existed justprior to the modi�ation beomes part of the his-tory pool. Eventually an old version will age andhave its spae relaimed. Beause lients annot betrusted to demarate versions onsisting of multiplemodi�ations, a separate version should be kept forevery modi�ation. This is in ontrast to versioning�le systems that generally reate new versions onlywhen a �le is losed.A self-seuring storage devie guarantees a lowerbound on the amount of time that a depreated ob-jet remains in the history pool before it is relaimed.During this window of time, the old version of theobjet an be ompletely restored by requesting thatthe drive opy forward the old version, thus mak-ing a new version. The guaranteed window of timeduring whih an objet an be restored is alled thedetetion window. When determining the size of thiswindow, the administrator must examine the trade-o� between the detetion lateny provided by a largewindow and the extra disk spae that is onsumedby the proportionally larger history pool.

Although the apaity of disk drives is growing ata remarkable rate, it is still �nite, whih poses twoproblems:1. Providing a reasonable detetion window in ex-eptionally busy systems.2. Dealing with maliious users that attempt to�ll the history pool. (Note that spae ex-haustion attaks are not unique to self-seuringstorage. However, devie-managed versioningmakes onventional user quotas ine�etive forlimiting them.)In a busy system, the amount of data written ouldmake providing a reasonable detetion window dif-�ult. Fortunately, the analysis in Setion 5.2 sug-gests that multi-week detetion windows an be pro-vided in many environments at a reasonable ost.Further, aggressive ompression and di�erening ofold versions an signi�antly extend the detetionwindow.Deliberate attempts to overow the history pool an-not be prevented by simply inreasing the spaeavailable. As with most denial of servie attaks,there is no perfet solution. There are three awedapproahes to addressing this type of abuse. The�rst is to have the devie relaim the spae held bythe oldest objets when the history pool is full. Un-fortunately, this would allow an intruder to destroyinformation by ausing its previous instanes to berelaimed from the overowing history pool. Theseond awed approah is to stop versioning objetswhen the history pool �lls; although this will allowreovery of old data, system administrators wouldno longer be able to diagnose the ations of an in-truder or di�erentiate them from subsequent legiti-mate hanges. The third awed approah is for thedrive to deny any ation that would require addi-tional versions one the history pool �lls; this wouldresult in denial of servie to all users (legitimate ornot).Our hybrid approah to this problem is to try to pre-vent the history pool from being �lled by detetingprobable abuses and throttling the soure mahine'saesses. This allows human intervention beforethe system is fored to hoose from the above pooralternatives. Seletively inreasing lateny and/ordereasing bandwidth allows well-behaved users toontinue to use the system even while it is under at-tak. Experiene will show how well this works inpratie.Sine the history pool will be used for intrusion di-agnosis and reovery, not just reovering from ai-

www.manaraa.com

dental destrution of data, it is diÆult to onstruta safe algorithm that would save spae in the his-tory pool by pruning versions within the detetionwindow. Almost any algorithm that seletively re-moves versions has the potential to be abused byan intruder to over his traks and to suessfullydestroy/modify information during a break-in.3.4 History pool aess ontrolThe history pool ontains a wealth of informationabout the system's reent ativity. This makes a-essing the history pool a sensitive operation, sineit allows the resurretion of deleted and overwrit-ten objets. This is a standard problem posed byversioning �le systems, but is exaerbated by theinability to seletively delete versions.There are two basi approahes that an be takentoward aess ontrol for the history pool. The �rstis to allow only a single administrative entity to havethe power to view and restore items from the historypool. This ould be useful in situations where theold data is onsidered to be highly sensitive. Havinga single tightly-ontrolled key for aessing historialdata dereases the likelihood of an intruder gainingaess to it. Although this improves seurity, it pre-vents users from being able to reover from theirown mistakes, thus onsuming the administrator'stime to restore users' �les. The seond approahis to allow users to reover their own old objets(in addition to the administrator). This providesthe onveniene of a user being able to reover theirdeleted data easily, but also allows an intruder, whoobtains valid redentials for a given user, to reoverthat user's old �le versions.Our ompromise is to allow users to seletively makethis deision. By hoie, a user ould thus delete anobjet, version, or all versions from visibility by any-one other than the administrator, sine permanentdeletion of data via any other method than agingwould be unsafe. This hoie allows users to en-joy the bene�ts of versioning for presentations andsoure ode, while preventing aess to visible ver-sions of embarrassing images or unsent e-mail drafts.3.5 Administrative aessA method for seure administrative aess is neededfor the neessary but dangerous ommands that aself-seuring storage devie must support. Suhommands inlude setting the guaranteed detetionwindow, erasing parts of the history pool, and a-essing data that users have marked as \unreover-able." Suh administrative aess an be seurely

granted in a number of ways, inluding physial a-ess (e.g., ipping a swith on the devie) or well-proteted ryptographi keys.Administrative aess is not neessary for users at-tempting to reover their own �les from aidents.Users' aesses to the history pool should be han-dled with the same form of protetion used for theirnormal aesses. This is aeptable for user ativity,sine all ations permitted for ordinary users an beaudited and repaired.3.6 Version and administration toolsSine self-seuring storage devies store versions ofraw data, users and administrators will need assis-tane in parsing the history pool. Tools for travers-ing the history must assist by bridging the gap be-tween standard �le interfaes and the raw versionsthat are stored by the devie. By being aware ofboth the versioning system and formats of the dataobjets, utilities an present interfaes similar tothat of Elephant [29℄, with \time-enhaned" versionsof standard utilities suh as ls and p. This is a-omplished by extending the read interfaes of thedevie to inlude an optional time parameter. Whenthis parameter is spei�ed, the drive returns datafrom the version of the objet that was valid at therequested time.In addition to providing a simple view of data ob-jets in isolation, intrusion diagnosis tools an utilizethe audit log to provide an estimate of damage. Forinstane, it is possible to see all �les and direto-ries that a lient modi�ed during the period of timethat it was ompromised. Further estimates of thepropagation of data written by ompromised lientsare also possible, though imperfet. For example,diagnosis tools may be able to establish a link be-tween objets based on the fat that one was readjust before another was written. Suh a link betweena soure �le and its orresponding objet �le wouldbe useful if a user determines that a soure �le hadbeen tampered with; in this situation, the objet �leshould also be restored or removed. Exploration ofsuh tools will be an important area of future work.4 S4 ImplementationS4 is a self-seuring storage server that transpar-ently maintains an eÆient objet-versioning systemfor its lients. It aims to perform omparably withurrent systems, while providing the bene�ts of self-seuring storage and minimizing the orrespondingspae explosion.

www.manaraa.com

RPC Type AllowsTime-BasedAess DesriptionCreate no Create an objetDelete no Delete an objetRead yes Read data from an objetWrite no Write data to an objetAppend no Append data to the end of an objetTrunate no Trunate an objet to a spei�ed lengthGetAttr yes Get the attributes of an objet (S4-spei� and opaque)SetAttr no Set the opaque attributes of an objetGetACLByUser yes Get an ACL entry for an objet given a spei� UserIDGetACLByIndex yes Get an ACL entry for an objet by its index in the objet's ACLtableSetACL no Set an ACL entry for an objetPCreate no Create a partition (assoiate a name with an ObjetID)PDelete no Delete a partition (remove a name/ObjetID assoiation)PList yes List the partitionsPMount yes Retrieve the ObjetID given its nameSyn not appliable Syn the entire ahe to diskFlush not appliable Removes all versions of all objets between two timesFlushO not appliable Removes all versions of an objet between two timesSetWindow not appliable Adjusts the guaranteed detetion window of the S4 devieTable 1: S4 Remote Proedure Call List { Operations that support time-based aess aept a time in addition to thenormal parameters; this time is used to �nd the appropriate version in the history pool. Note that all modi�ations reate newversions without a�eting the previous versions.4.1 A self-seuring objet storeS4 is a network-attahed objet store with an in-terfae similar to reent objet-based disk propos-als [9, 24℄. This interfae simpli�es aess ontroland internal performane enhanement relative to astandard blok interfae.In S4, objets exist in a at namespae managedby the \drive" (i.e., the objet store). When ob-jets are reated, they are given a unique identi�er(ObjetID) by the drive, whih is used by the lientfor all future referenes to that objet. Eah objethas an aess ontrol struture that spei�es whihentities (users and lient mahines) have permissionto aess the objet. Objets also have metadata, �ledata, and opaque attribute spae (for use by lient�le systems) assoiated with them.To enable persistent mount points, a S4 drive sup-ports \named objets." The objet names are anassoiation of an arbitrary ASCII string with a par-tiular ObjetID. The table of named objets is im-plemented as a speial S4 objet aessed through

dediated partition manipulation RPC alls. Thistable is versioned in the same manner as other ob-jets on the S4 drive.4.1.1 S4 RPC interfaeTable 1 lists the RPC ommands supported by theS4 drive. The read-only ommands (read, getattr,getal, plist, and pmount) aept an optional timeparameter. When the time is provided, the driveperforms the read request on the version of the ob-jet that was \most urrent" at the time spei�ed,provided that the user making the request has suÆ-ient privileges.The ACLs assoiated with objets have the tradi-tional set of ags, with one addition|the Reoveryag. The Reovery ag determines whether or not agiven user may read (reover) an objet version fromthe history pool one it is overwritten or deleted.When this ag is lear, only the devie administratormay read this objet version one it is pushed into

www.manaraa.com

the history pool. The Reovery ag allows users todeide the sensitivity of old versions on a �le-by-�lebasis.4.1.2 S4/NFS translationSine one goal of self-seuring storage is to providean enhaned level of seurity and onveniene onexisting systems, the prototype minimizes hangesto lient systems. In keeping with this philosophy,the S4 drive is network-attahed and an \S4 lient"daemon serves as a user-level �le system transla-tor (Figure 1a). The S4 lient translates requestsfrom a �le system on the target OS to S4-spei�requests for objets. Beause it runs as a user-levelproess, without operating systemmodi�ations, theS4 lient should port to di�erent systems easily.The S4 lient urrently has the ability to trans-late NFS version 2 requests to S4 requests. TheS4 lient appears to the loal workstation as a NFSserver. This emulated NFS server is mounted viathe loopbak interfae to allow only that worksta-tion aess to the S4 lient. The lient reeives theNFS requests and translates them into S4 opera-tions. NFSv2 was hosen over version 3 beause itslient is well-supported within Linux, and its lak ofwrite ahing allows the drive to maintain a detailedaount of lient ations.Figure 1 shows two approahes to using the S4 lientto serve NFS requests with the S4 drive. The �rstplaes the S4 lient on the lient system, as desribedpreviously, and uses the S4 drive as a network-attahed storage devie. The seond inorporatesthe S4 lient funtionality into the server, as a NFS-to-S4 translator. This on�guration ats as a S4-enhaned NFS server (Figure 1b) for normal �le sys-tem ativity, but reovery must still be aomplishedthrough the S4 protool sine the NFS protool hasno notion of \time-based" aess.The implementation of the NFS �le system overlays�les and diretories on top of S4 objets. Objetsused as diretories ontain a list of ASCII �lenamesand their assoiated NFS �le handles. Objets usedas �les and symlinks ontain the orresponding data.The NFS attribute struture is maintained withinthe opaque attribute spae of eah objet.When the S4 lient reeives a NFS request, the NFS�le handle (previously onstruted by the S4 lient)an be diretly hashed into the ObjetID of the di-retory or �le. The S4 lient an then make requestsdiretly to the drive for the desired data.

S4 DriveApplication
Client

Kernel

Client

S4 Client

S4 RPCNFS

Kernel

RPC

S4 RPC

Drive

(a) Baseline S4 (network-attached object store)

Client Drive

Kernel Kernel

Application S4 Drive

NFS

S4 RPCNFS S4 RPC

Client S4-NFS
Translator

(b) S4-enhanced NFS serverFigure 1: Two S4 Con�gurations { This �gure shows twoS4 on�gurations that provide self-seuring storage via a NFSinterfae. (a) shows S4 as a network-attahed objet storewith the S4 lient daemon translating NFS requests to S4-spei� RPCs. (b) shows a self-seuring NFS server reatedby ombining the NFS-to-S4 translation and the S4 drive.To support NFSv2 semantis, the lient sends an ad-ditional RPC to the drive to ush bu�ered writes tothe disk at the end of eah NFS operation that mod-i�es the state of one or more objets. Sine this RPCdoes not return until the synhronization is om-plete, NFSv2 semantis are supported even thoughthe drive normally ahes writes.Beause the lient overlays a �le system on top ofthe at objet namespae, some �le system oper-ations require several drive operations (and heneRPC alls). These sets of operations are analogousto the operations that �le systems must performon blok-based devies. To minimize the numberof RPC alls neessary, the S4 lient aggressivelymaintains attribute and diretory ahes (for readsonly). The drive also supports bathing of setattr,getattr, and syn operations with reate, read,write, and append operations.4.2 S4 drive internalsThe main goals for the S4 drive implementationare to avoid performane overhead and to minimizewasted spae, while keeping all versions of all objetsfor a given period of time. Ahieving these goals re-

www.manaraa.com

quires a ombination of known and novel tehniquesfor organizing on-disk data.4.2.1 Log-struturing for eÆient writesSine data within the history pool annot be over-written, the S4 drive uses a log struture similar toLFS [27℄. This struture allows multiple data andmetadata updates to be lustered into fewer, largerwrites. Importantly, it also obviates any need tomove previous versions before writing.In order to prune old versions and relaim unusedsegments, S4 inludes a bakground leaner. Whilethe goal of this leaner is similar to that of the LFSleaner, the design must be slightly di�erent. Speif-ially, depreated objets annot be relaimed unlessthey have also aged out of the history pool. There-fore, the S4 leaner searhes through the objet mapfor objets with an oldest time greater than the de-tetion window. One a suitable objet is found,the leaner permanently frees all data and meta-data older than the window. If this lears all ofthe resoures within a segment, the segment an bemarked as free and used as a fresh segment for fore-ground ativity.4.2.2 Journal-based metadataTo eÆiently keep all versions of objet metadata,S4 uses journal-based metadata, whih replaes mostinstanes of metadata with ompat journal entries.Beause lients are not trusted to notify S4 whenobjets are losed, every update reates a new ver-sion and thus new metadata. For example, whendata pointed to by indiret bloks is modi�ed, theindiret bloks must be versioned as well. In a on-ventional versioning system, a single update to atriple-indiret blok ould require four new bloksas well as a new inode. Early experiments with thistype of versioning system showed that modifying alarge �le ould ause up to a 4x growth in disk us-age. Conventional versioning �le systems avoid thisperformane problem by only reating new versionswhen a �le is losed.In order to signi�antly redue these problems, S4enodes metadata hanges in a journal that is main-tained for the duration of the detetion window. Bypersistently keeping journal entries of all metadatahanges, metadata writes an be safely delayed andoalesed, sine individual inode and indiret blokversions an be rereated from the journal. To avoid

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

Block
Data

Block
Indirect

Block
Data

Block
Indirect

Block
Data

Block
Indirect

Log
Inode

Block
New

Indirect
New

Inode
New

Block
New

Sector
Journal

Inode

InodeInode

Original state

Journal-based MetadataConventional VersioningFigure 2: EÆieny of Metadata Versioning { Theabove �gure ompares metadata management in a onven-tional versioning system to S4's journal-based metadata ap-proah. When writing to an indiret blok, a onventionalversioning system alloates a new data blok, a new indiretblok, and a new inode. Also, the identity of the new in-ode must be reorded (e.g., in an Elephant-like inode log).With journal-based metadata, a single journal entry suÆes,pointing to both the new and old data bloks.rebuilding an objet's urrent state from the jour-nal during normal operation, an objet's metadatais hekpointed to a log segment before being evitedfrom the ahe. Unlike onventional journaling, suhhekpointing does not prune journal spae; only ag-ing may prune spae. Figure 2 depits the di�erenein disk spae usage between journal-based metadataand onventional versioning when writing data to anindiret data blok.In addition to the entries needed to desribe meta-data hanges, a hekpoint entry is needed. Thishekpoint entry denotes writing a onsistent opyof all of an objet's metadata to disk. It is neessaryto have at least one hekpoint of an objet's meta-data on disk at all times, sine this is the startingpoint for all time-based and rash reovery rere-ations.Storing an objet's hanges within the log is done us-ing journal setors. Eah journal setor ontains thepaked journal entries that refer to a single objet'shanges made within that segment. The setors areidenti�ed by segment summary information. Jour-nal setors are hained together bakward in time toallow for version reonstrution.Journal-based metadata an also simplify ross-version di�erential ompression [3℄. Sine the blokshanged between versions are noted within eah en-try, it is easy to �nd the bloks that should be om-

www.manaraa.com

pared. One the di�erening is omplete, the oldbloks an be disarded, and the di�erene left inits plae. For subsequent reads of old versions, thedata for eah blok must be rereated as the en-tries are traversed. Cross-version di�erening of olddata will often be e�etive in reduing the amountof spae used by old versions. Adding di�ereningtehnology into the S4 leaner is an area of futurework.4.2.3 Audit logIn addition to maintaining previous objet versions,S4 maintains an append-only audit log of all re-quests. This log is implemented as a reserved objetwithin the drive that annot be modi�ed exept bythe drive itself. However, it an be read via RPC op-erations. The data written to the audit log inludesommand arguments as well as the originating lientand user. All RPC operations (read, write, and ad-ministrative) are logged. Sine the audit log mayonly be written by the drive front end, it need notbe versioned, thus inreasing spae eÆieny and de-reasing performane osts.5 Evaluation of self-seuring storageThis setion evaluates the feasibility of self-seuringstorage. Experiments with S4 indiate that ompre-hensive versioning and auditing an be performedwithout a signi�ant performane impat. Also, es-timates of apaity growth, based on reported work-load haraterizations, indiate that history win-dows of several weeks an easily be supported inseveral real environments.5.1 PerformaneThe main performane goal for S4 is to be ompara-ble to other networked �le systems while o�ering en-haned seurity features. This setion demonstratesthat this goal is ahieved and also explores the over-heads spei�ally assoiated with self-seuring stor-age features.5.1.1 Experimental SetupThe four systems used in the experiments had thefollowing on�gurations: (1) a S4 drive runningon RedHat 6.1 Linux ommuniating with a Linuxlient over S4 RPC through the S4 lient module(Figure 1a), (2) a S4-enhaned NFS server running

on RedHat 6.1 Linux ommuniating with a Linuxlient over NFS (Figure 1b), (3) a FreeBSD 4.0server ommuniating with a Linux lient over NFS,and (4) a RedHat 6.1 Linux server ommuniatingwith a Linux lient over NFS. Sine Linux NFS doesnot omply with the NFSv2 semantis of ommit-ting data to stable storage before operation om-pletion, the Linux server's �le system was mountedsynhronously to approximate NFS semantis. In allases, NFS was on�gured to use 4KB read/writetransfer sizes, the only option supported by Linux.The FreeBSD NFS on�guration exports a BSD FFS�le system, while the Linux NFS on�guration ex-ports an ext2 �le system. All experiments were run�ve times and have a standard deviation of less than3% of the mean. The S4 drives were on�gured witha 128MB bu�er ahe and a 32MB objet ahe. TheLinux and FreeBSD NFS servers' ahes ould growto �ll loal memory (512MB).In all experiments, the lient system has a 550MHzPentium III, 128MB RAM, and a 3Com 3C905B100Mb network adapter. The servers have a 600MHzPentium III, 512MB RAM, a 9GB 10; 000RPM Ul-tra2 SCSI Seagate Cheetah drive, an Adapte AIC-7896/7 Ultra2 SCSI ontroller, and an Intel Ether-Express Pro100 100Mb network adapter. The lientand server are on the same subnet and are onnetedby a 100Mb network swith. All versions of Linuxuse an unmodi�ed 2.2.14 kernel, and the BSD sys-tem uses a stok FreeBSD 4.0 installation.To evaluate performane for ommon workloads,results from two appliation benhmarks are pre-sented: the PostMark benhmark [14℄ and the SSH-build benhmark [36℄. These benhmarks rudelyrepresent Internet server and software developmentworkloads, respetively.PostMark was designed to measure the performaneof a �le system used for eletroni mail, netnews,and web based servies. It reates a large num-ber of small randomly-sized �les (between 512B and9KB) and performs a spei�ed number of transa-tions on them. Eah transation onsists of two sub-transations, with one being a reate or delete andthe other being a read or append. The default on-�guration used for the experiments onsists of 20,000transations on 5,000 �les, and the biases for trans-ation type are equal.The SSH-build benhmark was onstruted as areplaement for the Andrew �le system benh-mark [12℄. It onsists of 3 phases: The unpak phase,whih unpaks the ompressed tar arhive of SSHv1.2.27 (approximately 1MB in size before deom-

www.manaraa.com

Transaction Time Creation Time
0

100

200

300

400

500

600

700

800

900

T
im

e
(S

ec
on

ds
)

S4
S4−NFS
BSD−NFS
Linux−NFS

Figure 3: PostMark Benhmarkpression), stresses metadata operations on �les ofvarying sizes. The on�gure phase onsists of theautomati generation of header �les and Make�les,whih involves building various small programs thathek the existing system on�guration. The buildphase ompiles, links, and removes temporary �les.This last phase is the most CPU intensive, but italso generates a large number of objet �les and afew exeutables.
5.1.2 Comparison of the serversTo gauge the overall performane of S4, the foursystems desribed earlier were ompared. As hoped,S4 performs omparably to the existing NFS servers.Figure 3 shows the results of the PostMark benh-mark. The times for both the reation (time to re-ate the initial 5000 �les) and transation phases ofPostMark are shown for eah system. The S4 sys-tems' performane is similar to both BSD and LinuxNFS performane, doing slightly better due to theirlog strutured layout.The times of SSH-build's three phases are shownin Figure 4. Performane is similar aross the S4and BSD on�gurations. The superior performaneof the Linux NFS server in the on�gure stage is dueto a muh lower number of write I/Os than in theBSD and S4 servers, apparently due to a aw in thesynhronous mount option under Linux.

Unpack Configure Build
0

50

100

150

T
im

e
(s

ec
on

ds
)

S4
S4−NFS
BSD−NFS
Linux−NFS

Figure 4: SSH-build Benhmark
5.1.3 Overhead of the S4 leanerIn addition to the more visible proess of reatingnew versions, S4 must eventually garbage olletdata that has expired from the history pool. Thisgarbage olletion omes at a ost. The potentialoverhead of the leaner was measured by runningthe PostMark benhmark with 50,000 transationson inreasingly large sets of initial �les. For eah setof initial �les, the benhmark was run one with theleaner disabled and one with the leaner ompet-ing with foreground ativity.The results shown in Figure 5 represent PostMarkrunning with the initial set of �les �lling between2% and 90% of a 2GB disk. As expeted, when theworking set inreases, performane of the normal S4system degrades due to inreasingly poor ahe anddisk loality. The sharp drop in the graph from 2%to 10% is aused by the fat that the set of �lesand data expands beyond the bounds of the drive'sahe.Although the S4 leaner is slightly di�erent, it wasexpeted to behave similarly to a standard LFSleaner, whih has up to an approximate 34% de-rease in performane [30℄. The S4 leaner is slightlymore intrusive, degrading performane by approxi-mately 50% in the worst ase. The greater degra-dation is attributed mainly to the additional readsneessary when leaning objets rather than seg-ments. In addition, the S4 leaner has not beentuned and does not inlude known tehniques forreduing leaner performane problems [21℄.

www.manaraa.com

 0% 20% 40% 60% 80% 100%
0

5

10

15

20

25

30

35

40

45

T
ra

ns
ac

tio
ns

/S
ec

on
d

Disk capacity utilization

No Cleaner
Cleaner

Figure 5: Overhead of foreground leaning in S4 {This �gure shows the transation performane of S4 runningthe PostMark benhmark with varying apaity utilizations.The solid line shows system performane on a system withoutleaning. The dashed line shows system performane in thepresene of ontinuous foreground leaner ativity.5.1.4 Overhead of the S4 audit logIn addition to versioning, self-seuring storage de-vies keep an audit log of all onnetions and om-mands sent to the drive. Reording this audit logof events has some ost. In the worst ase, all datawritten to the disk belongs to the audit log. In thisase, one disk write is expeted approximately ev-ery 750 operations. In the best ase, large writes,the audit log overhead is almost non-existent, sinethe writes of the audit log bloks are hidden inthe segment writes of the requests. For the maro-benhmarks, the performane penalty ranged be-tween 1% and 3%.For a more foused view of this overhead, a set ofmiro-benhmarks were run with audit logging en-abled and disabled. The miro-benhmarks proeedin three phases: reation of 10,000 1KB �les (splitaross 10 diretories), reads of the newly reated �lesin reation order, and deletion of the �les in reationorder.Figure 6 shows the results. The reate and deletephases exhibit a 2.8% and 2.9% derease in perfor-mane, respetively, and the read phase exhibits a7.2% derease in performane. Read performanesu�ers a larger penalty beause the audit log bloksbeome interwoven with the data bloks in the reatephase. This redues the number of �les paked intoeah segment, whih in turn inreases the number ofsegment reads required.

Creates Reads Deletes
0

50

100

150

200

250

300

350

400

10,000 1KB File Accesses

F
ile

s/
S

ec
on

d

Auditing
No Auditing

Figure 6: Auditing Overhead in S4 { This �gure showsthe impat on small �le performane aused by auditing in-oming lient requests.5.1.5 Fundamental performane ostsThere are three fundamental performane ostsof self-seuring storage: versioning, auditing, andgarbage olletion. Versioning an be ahieved atvirtually no ost by ombining journal-based meta-data with the LFS struture. Auditing reates asmall performane penalty of 1% to 3%, aordingto appliation benhmarks. The �nal performaneost, garbage olletion, is more diÆult to quantify.The extra overhead of S4 leaning in omparison tostandard LFS leaning omes mainly from the dif-ferene in utilized spae due to the history pool.The worst-ase performane penalty for garbage ol-letion in S4 an be estimated by omparing theleaning overhead at two spae utilizations: thespae utilized by the ative set of objets and thespae utilized by the ative set ombined with thehistory pool. For example, assume that the ativeset utilizes 60% of the drive's spae and the historypool another 20%. For PostMark, the leaning over-head is the di�erene between leaning performaneand standard performane seen at a given spae uti-lization in Figure 5. For 60% utilization, the lean-ing overhead is 43%. For 80% utilization, it is 53%.Thus, in this example, the extra leaning overheadaused by keeping the history pool is 10%.There are several possibilities for reduing leaneroverhead for all spae utilizations. With expeteddetetion windows ranging into the hundreds ofdays, it is likely that the history pool an be ex-tended until suh a time that the drive beomes idle.During idle time, the leaner an run with no observ-

www.manaraa.com

0 100 200 300 400 500

AFS 96

HPUX 99

NT 99

Time in Days

Base
Differencing
Compression

Figure 7: Projeted Detetion Window { The expeteddetetion window that ould be provided by utilizing 10GBof a modern disk drive. This onservative history pool wouldonsume only 20% of a 50GB disk's total apaity. The base-line number represents the projeted number of days worth ofhistory information that an be maintained within this 10GBof spae. The gray regions show the projeted inrease thatross-version di�erening would provide. The blak regionsshow the further inrease expeted from using ompression inaddition to di�erening.able overhead [2℄. Also, reent researh into teh-nologies suh as freeblok sheduling o�er standardLFS leaning at almost no ost [18℄. This tehniqueould be extended for leaning in S4.5.2 Capaity RequirementsTo evaluate the size of the detetion window thatan be provided, three reent workload studies wereexamined. Figure 7 shows the results of approxi-mations based on worst-ase write behavior. Spa-sojevi and Satyanarayanan's AFS trae study [32℄reports approximately 143MB per day of write traf-� per �le server. The AFS study was onduted us-ing 70 servers (onsisting of 32; 000 ells) distributedaross the wide area, ontaining a total of 200GB ofdata. Based on this study, using just 20% of a mod-ern 50GB disk would yield over 70 days of historydata. Even if the writes onsume 1GB per day perserver, as was seen by Vogels' Windows NT �le us-age study [34℄, 10 days worth of history data an beprovided. The NT study onsisted of 45 mahinessplit into personal, shared, and administrative do-mains running workloads of sienti� proessing, de-velopment, and other administrative tasks. Santry,et al. [29℄ report a write data rate of 110MB perday. In this ase, over 90 days of data ould bekept. Their environment onsisted of a single �lesystem holding 15GB of data that was being used

by a dozen researhers for development.Muh work has been done in evaluating the eÆienyof di�erening and ompression [3, 4, 5℄. To brieyexplore the potential bene�ts for S4, its ode basewas retrieved from the CVS repository at a singlepoint eah day for a week. After ompiling the ode,both di�erening and di�erening with ompressionwere applied between eah tree and its diret neigh-bor in time using Xdelta [19, 20℄. After applyingdi�erening, the spae eÆieny inreased by 200%.Applying ompression added an additional 200% fora total spae eÆieny of 500%. These results are inline with previous work. Applying these estimates tothe above workloads indiates that a 10GB historypool an provide a detetion window of between 50and 470 days.6 DisussionThis setion disusses several important impliationsof self-seuring storage.Seletive versioning: There are data that userswould prefer not to have baked up at all. The om-mon approah to this is to store them in diretoriesknown to be skipped by the bakup system. Sineone of the goals of S4 is to allow reovery of exploittools, it does not support designating objets as non-versioned. A system may be on�gured with non-S4partitions to support seletive versioning. While thiswould provide a way to prevent versioning of tempo-rary �les and other non-ritial data, it would alsoreate a loation where an intruder ould temporar-ily store exploit tools without fear that they will bereovered.Versioning vs. snapshots: Self-seuring stor-age an be implemented with frequent opy-on-writesnapshots [11, 12, 17℄ instead of versioning, so longas snapshots are kept for the full detetion window.Although the audit log an still provide a reord ofwhat bloks are hanged, snapshots often will not al-low administrators to reover short-lived �les (e.g.,exploit tools) or intermediate versions (e.g., systemlog �le updates). Also, legitimate hanges are onlyguaranteed to survive maliious ativity if they sur-vive to the next snapshot time. Of ourse, the po-tential sope of suh problems an be redued byshrinking the time between snapshots. The ompre-hensive versioning promoted in this paper representsthe natural end-point of suh shrinking|every mod-i�ation reates a new snapshot.Versioning �le systems vs. self-seuring stor-age: Versioning �le systems exel at providing users

www.manaraa.com

with a safety net for reovery from aidents. Theymaintain old �le versions long after they would berelaimed by the S4 system, but they provide lit-tle additional system seurity. This is beause theyrely on the host's OS for seurity and aggressivelyprune apparently insigni�ant versions. By ombin-ing self-seuring storage with long-term landmarkversioning [28℄, reovery from users' aidents ouldbe enhaned while also maintaining the bene�ts ofintrusion survival.Self-seuring storage for databases: Mostdatabases log all hanges in order to protet internalonsisteny in the fae of system rashes. Some in-stitutions also retain these logs for long-term audit-ing purposes. All information needed to understandand reover from maliious behavior an be kept, indatabase-spei� form, in these logs. Self-seuringstorage an inrease the post-intrusion reoverabil-ity of database systems in two ways: (1) by prevent-ing undetetable tampering with stored log reords,and (2) by preventing undetetable hanges to datathat bypass the log. After an intrusion, self-seuringstorage allows a database system to verify its log'sintegrity and on�rm that all hanges are orretlyreeted in the log|the database system an thensafely use its log for subsequent reovery.Client-side ahe e�ets: In order to improve ef-�ieny, most lient systems use ahes to minimizestorage latenies. This is at odds with the desireto have storage devies audit users' aesses andapture exploit tools. Client-side read ahes hidedata dependeny information that would otherwisebe available to the drive in the form of reads followedquikly by writes. However, this information ouldbe provided by lient systems as (questionable) hintsduring writes. Write ahes ause a more seriousproblem when �les are reated then quikly deleted,thus never being sent to the drive. This ould ausediÆulties with apturing exploit tools, sine theymay never be written to the drive. Although lientahe e�ets may obsure some of the ativity in thelient system, data that are stored on a self-seuringstorage devie are still ompletely proteted.Objet-based vs. blok-based storage: Imple-menting a self-seuring storage devie with a blokinterfae adds several diÆulties. Sine objets aredesigned to ontain one data item (�le or diretory),enforing aess ontrol at this level is muh moremanageable than attempting to assign permissionson a per-blok basis. In addition, maintaining ver-sions of objets as a whole, rather than having to ol-let and orrelate individual bloks, simpli�es reov-ery tools and internal reorganization mehanisms.

Multi-devie oordination: Multi-devie oordi-nation is neessary for operations suh as stripingdata or implementing RAID aross multiple self-seuring disks or �le servers. In addition to the o-ordination neessary to ensure that multiple opiesof data are synhronized, reovery operations mustalso oordinate old versions. On the other hand,lusters of self-seuring storage devies ould main-tain a single history pool and balane the load ofversioning objets. Note that a self-seuring storagedevie ontaining several disks (e.g., a self-seuringdisk array) does not have these issues. Additionally,it has the ability to keep old versions and urrentdata on separate disks.7 Related WorkSelf-seuring storage and S4 build on many ideasfrom previous work. Perhaps the learest example isversioning: many versioned �le systems have helpedtheir users to reover from mistakes [22, 10℄. Santry,et al., provide a good disussion of tehniques fortraversing versions and deiding what to retain [29℄.S4's history pool orresponds to Elephant's \keepall" poliy (during its detetion window), and it usesElephant's time-based aess. The primary advan-tage of S4 over suh systems is that it has been par-titioned from lient operating systems. While thisreates another layer of abstration, it adds to thesurvivability of the storage.A self-seuring disk drive would be another instaneof many reent \smart disk" systems [1, 8, 15, 26,35℄. All of these exploit the inreasing omputationpower of suh devies. Some also put these devieson networks and exploit an objet-based interfae.There is now an ANSI X3T10 (SCSI) working grouplooking to reate a new standard for objet-basedstorage devies. The S4 interfae is similar to these.The standard method of intrusion reovery is to keepa periodi bakup of �les on trusted storage. Sev-eral �le systems simplify this proess by allowing asnapshot to be taken of a �le system [11, 12, 17℄.This snapshot an then be baked-up with standard�le system tools. Spiralog [13℄ uses a log-strutured�le system to allow for bakups to be made duringsystem operation by simply reording the entire logto tertiary storage. While these systems are e�etivein preventing the loss of long-existing ritial data,the window of time in whih data an be destroyedor tampered with is muh larger than in S4|often24 hours or more. Also, these systems are generallyreliant upon a system administrator for operation,with a orresponding inrease in ost and potential

www.manaraa.com

for human error. In addition, intrusion diagnosis isextremely diÆult in suh systems. Permanent �lestorage [25℄ provides an unlimited set of punture-proof bakups over time. These systems are unlikelyto beome the �rst-line of storage beause of lengthyaess times.S4 borrows on-disk data strutures from several sys-tems. Unlike Elephant's FFS-like layout [23℄, thedisk layout of S4 more losely resembles that of alog strutured �le system [27℄. Many �le systemsuse journaling to improve performane while main-taining disk onsisteny [6, 31, 33℄. However, thesesystems delete the journal information one hek-points ensure that the orresponding bloks are allon disk. S4's journal-based metadata persistentlystores metadata versions in a spae-eÆient man-ner.8 ConlusionsSelf-seuring storage ensures data and audit log sur-vival in the presene of suessful intrusions and evenompromised host operating systems. Experimentswith the S4 prototype show that self-seuring stor-age devies an ahieve performane that is om-parable to existing storage applianes. In addition,analysis of reent workload studies suggest that om-plete version histories an be kept for several weekson state-of-the-art disk drives.AknowledgmentsWe thank Brian Bershad, David Petrou, Garth Gib-son, Andy Klosterman, Alistair Veith, Jay Wylie,and the anonymous reviewers for helping us re�nethis paper. We thank the members and ompaniesof the Parallel Data Consortium (inluding CLARi-iON, EMC, HP, Hitahi, In�neon, Intel, LSI Logi,MTI, Novell, PANASAS, Proom, Quantum, Sea-gate, Sun, Veritas, and 3Com) for their interest, in-sights, and support. We also thank IBM Corpora-tion for supporting our researh e�orts. This workis partially funded by the National Siene Founda-tion via CMU's Data Storage Systems Center andby DARPA/ISO's Intrusion Tolerant Systems pro-gram (Air Fore ontrat number F30602-99-2-0539-AFRL). Craig Soules is supported by a USENIXsholarship.Referenes[1℄ Anurag Aharya, Mustafa Uysal, and Joel Saltz. Ativedisks: programming model, algorithms and evaluation.Arhitetural Support for Programming Languages and

Operating Systems (San Jose, California), pages 81{91.ACM, 3{7 Otober 1998.[2℄ Trevor Blakwell, Je�rey Harris, and Margo Seltzer.Heuristi leaning algorithms in log-strutured �le sys-tems. Annual USENIX Tehnial Conferene (New Or-leans), pages 277{288. Usenix Assoiation, 16{20 Jan-uary 1995.[3℄ Randal C. Burns. Di�erential ompression: a general-ized solution for binary �les. Masters thesis. Universityof California at Santa Cruz, Deember 1996.[4℄ M. Burrows and D. J. Wheeler. A blok-sorting losslessdata ompression algorithm. 124. Digital EquipmentCorporation Systems Researh Center, Palo Alto, CA,10 May 1994.[5℄ Mihael Burrows, Charles Jerian, Butler Lampson, andTimothy Mann. On-line data ompression in a log-strutured �le system. Arhitetural Support for Pro-gramming Languages and Operating Systems (Boston,MA, 12{15 Otober 1992). Published as Computer Ar-hiteture News, 20(speial issue):2{9, Otober 1992.[6℄ Sailesh Chutani, Owen T. Anderson, Mihael L. Kazar,Brue W. Leverett, W. Anthony Mason, and Robert N.Sidebotham. The Episode File System. Annual USENIXTehnial Conferene (San Franiso, CA), pages 43{60,Winter 1992.[7℄ Dorothy Denning. An intrusion-detetion model. IEEETransations on Software Engineering, SE-13(2):222{232, February 1987.[8℄ Garth A. Gibson, David F. Nagle, Khalil Amiri, Je� But-ler, Fay W. Chang, Howard Gobio�, Charles Hardin,Erik Riedel, David Rohberg, and Jim Zelenka. A ost-e�etive, high-bandwidth storage arhiteture. Arhite-tural Support for Programming Languages and Operat-ing Systems (San Jose, CA, 3{7 Otober 1998). Pub-lished as SIGPLAN Noties, 33(11):92{103, November1998.[9℄ Garth A. Gibson, David F. Nagle, William CourtrightII, Nat Lanza, Paul Mazaitis, Mar Unangst, and JimZelenka. NASD salable storage systems. USENIX.99(Monterey, CA., June 1999), 1999.[10℄ Robert Hagmann. Reimplementing the Cedar �le sys-tem using logging and group ommit. ACM Symposiumon Operating System Priniples (Austin, Texas, 8{11November 1987). Published as Operating Systems Re-view, 21(5):155{162, November 1987.[11℄ David Hitz, James Lau, and Mihael Malolm. Filesystem design for an NFS �le server appliane. Win-ter USENIX Tehnial Conferene (San Franiso, CA).Published as Proeedings of USENIX, pages 235{246.USENIX Assoiation, 19 January 1994.[12℄ John H. Howard, Mihael L. Kazar, Sherri G. Menees,David A. Nihols, M. Satyanarayanan, Robert N. Side-botham, and Mihael J. West. Sale and performane ina distributed �le system. ACM Transations on Com-puter Systems, 6(1):51{81, February 1988.[13℄ James E. Johnson andWilliamA. Laing. Overview of theSpiralog �le system. Digital Tehnial Journal, 8(2):5{14, 1996.[14℄ Je�rey Kather. PostMark: a new �le system benh-mark. TR3022. Network Appliane, Otober 1997.[15℄ Kimberly Keeton, David A. Patterson, and Joseph M.Hellerstein. A ase for intelligent disks (IDISKs). SIG-MOD Reord, 27(3):42{52, September 1998.[16℄ Gene H. Kim and Eugene H. Spa�ord. The designand implementation of Tripwire: a �le system integrity

www.manaraa.com

heker. Conferene on Computer and CommuniationsSeurity (Fairfax, Virginia), pages 18{29, 2{4 November1994.[17℄ Edward K. Lee and Chandramohan A. Thekkath. Petal:distributed virtual disks. Arhitetural Support forProgramming Languages and Operating Systems (Cam-bridge, MA). Published as SIGPLAN Noties, 31(9):84{92, 1{5 Otober 1996.[18℄ Christopher Lumb, Jiri Shindler, Gregory R. Ganger,David F. Nagle, and Erik Riedel. Towards higher diskhead utilization: Extrating \free" bandwidth from busydisk drives. Symposium on Operating Systems Designand Implementation (San Deigo, CA, 23{25 Otober2000). ACM, Otober 2000.[19℄ Josh MaDonald. File system support for delta ompres-sion. Masters thesis. Department of Eletrial Engineer-ing and Computer Siene, University of California atBerkeley, 2000.[20℄ Josh MaDonald, Paul N. Hil�nger, and Luigi Se-menzato. PRCS: The projet revision ontrol system.European Conferene on Objet-Oriented Programming(Brussels, Belgium, July, 20{21). Published as Proeed-ings of ECOOP, pages 33{45. Springer-Verlag, 1998.[21℄ Jeanna Neefe Matthews, Drew Roselli, Adam M.Costello, Randolph Y. Wang, and Thomas E. Ander-son. Improving the performane of log-strutured �lesystems with adaptive methods. ACM Symposium onOperating System Priniples (Saint-Malo, Frane, 5{8Otober 1997). Published as Operating Systems Review,31(5):238{252. ACM, 1997.[22℄ K. MCoy. VMS �le system internals. Digital Press,1990.[23℄ Marshall K. MKusik, William N. Joy, Samuel J. Lef-er, and Robert S. Fabry. A fast �le system for UNIX.ACM Transations on Computer Systems, 2(3):181{197,August 1984.[24℄ Objet based storage devies: a ommand set proposal.Tehnial report. Otober 1999. http://www.T10.org/.[25℄ Rob Pike, Dave Presotto, Ken Thompson, and HowardTrikey. Plan 9 from Bell Labs. UKUUG Summer (Lon-don), pages 1{9. United Kingdom UNIX systems UserGroup, Buntingford, Herts, 9{13 July 1990.[26℄ Erik Riedel and Garth Gibson. Ative disks|remoteexeution for network-attahed storage. TR CMU-CS-97-198. Deember 1997.[27℄ Mendel Rosenblum and John K. Ousterhout. The de-sign and implementation of a log-strutured �le system.ACM Transations on Computer Systems, 10(1):26{52,February 1992.[28℄ Douglas J. Santry, Mihael J. Feeley, and Norman C.Huthinson. Elephant: the �le system that never forgets.Hot Topis in Operating Systems (Rio Rio, AZ, 29{30Marh 1992). IEEE Computer Soiety, 1999.[29℄ Douglas S. Santry, Mihael J. Feeley, Norman C.Huthinson, Ross W. Carton, Jaob O�r, and Alistair C.Veith. Deiding when to forget in the Elephant �le sys-tem. ACM Symposium on Operating System Priniples(Kiawah Island Resort, South Carolina). Published asOperating Systems Review, 33(5):110{123. ACM, 12{15Deember 1999.[30℄ Margo Seltzer, Keith A. Smith, Hari Balakrishnan,Jaqueline Chang, Sara MMains, and Venkata Padman-abhan. File system logging versus lustering: a perfor-mane omparison. Annual USENIX Tehnial Confer-ene (New Orleans), pages 249{264. Usenix Assoiation,

16{20 January 1995.[31℄ Margo I. Seltzer, Gregory R. Ganger, M. Kirk MKusik,Keith A. Smith, Craig A. N. Soules, and Christopher A.Stein. Journaling versus Soft Updates: AsynhronousMeta-data Protetion in File Systems. USENIX AnnualTehnial Conferene (San Diego, CA), 18{23 June 2000.[32℄ M. Spasojevi and M. Satyanarayanan. An empirial-study of a wide-area distributed �le system. ACM Trans-ations on Computer Systems, 14(2):200{222, May1996.[33℄ Adam Sweeney. Salability in the XFS �le system.USENIX. (San Diego, California), pages 1{14, 22{26January 1996.[34℄ Werner Vogels. File system usage in Windows NT 4.0.ACM Symposium on Operating System Priniples (Ki-awah Island Resort, Charleston, South Carolina, 12{15Deember 1999). Published as Operating System Review,33(5):93{109. ACM, Deember 1999.[35℄ Randolph Y. Wang, David A. Patterson, and Thomas E.Anderson. Virtual log based �le systems for a pro-grammable disk. Symposium on Operating SystemsDesign and Implementation (New Orleans, LA, 22{25February 1999), pages 29{43. ACM, Winter 1998.[36℄ Tatu Ylonen. SSH | Seure login onnetions over theinternet. USENIX Seurity Symposium (San Jose, CA).USENIX Assoiation, 22{25 July 1996.

