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Self-Se
uring Storage:Prote
ting Data in Compromised SystemsJohn D. Strunk, Garth R. Goodson, Mi
hael L. S
heinholtz, Craig A.N. SoulesGregory R. GangerCarnegie Mellon UniversityAbstra
tSelf-se
uring storage prevents intruders from unde-te
tably tampering with or permanently deletingstored data. To a

omplish this, self-se
uring stor-age devi
es internally audit all requests and keepold versions of data for a window of time, regard-less of the 
ommands re
eived from potentially 
om-promised host operating systems. Within the win-dow, system administrators have this valuable in-formation for intrusion diagnosis and re
overy. Ourimplementation, 
alled S4, 
ombines log-stru
turingwith journal-based metadata to minimize the per-forman
e 
osts of 
omprehensive versioning. Exper-iments show that self-se
uring storage devi
es 
andeliver performan
e that is 
omparable with 
onven-tional storage systems. In addition, analyses indi-
ate that several weeks worth of all versions 
an rea-sonably be kept on state-of-the-art disks, espe
iallywhen di�eren
ing and 
ompression te
hnologies areemployed.1 Introdu
tionDespite the best e�orts of system designers and im-plementors, it has proven diÆ
ult to prevent 
om-puter se
urity brea
hes. This fa
t is of growing im-portan
e as organizations �nd themselves in
reas-ingly dependent on wide-area networking (providingmore potential sour
es of intrusions) and 
omputer-maintained information (raising the signi�
an
e ofpotential damage). A su

essful intruder 
an obtainthe rights and identity of a legitimate user or admin-istrator. With these rights, it is possible to disruptthe system by a

essing, modifying, or destroying
riti
al data.Even after an intrusion has been dete
ted and termi-nated, system administrators still fa
e two diÆ
ulttasks: determining the damage 
aused by the intru-sion and restoring the system to a safe state. Dam-age in
ludes 
ompromised se
rets, 
reation of ba
kdoors and Trojan horses, and tainting of stored data.Dete
ting ea
h of these is made diÆ
ult by 
rafty in-truders who understand how to s
rub audit logs and

disrupt automated tamper dete
tion systems. Sys-tem restoration involves identifying a 
lean ba
kup(i.e., one 
reated prior to the intrusion), reinitializ-ing the system, and restoring information from theba
kup. Su
h restoration often requires a signi�-
ant amount of time, redu
es the availability of theoriginal system, and frequently 
auses loss of data
reated between the safe ba
kup and the intrusion.Self-se
uring storage o�ers a partial solution to theseproblems by preventing intruders from undete
tablytampering with or permanently deleting stored data.Sin
e intruders 
an take the identity of real users andeven the host OS, any resour
e 
ontrolled by the op-erating system is vulnerable, in
luding the raw stor-age. Rather than a
ting as slaves to host OSes, self-se
uring storage devi
es view them, and their users,as questionable entities for whi
h they work. Theseself-
ontained, self-
ontrolled devi
es internally ver-sion all data and audit all requests for a guaranteedamount of time (e.g., a week or a month), thus pro-viding system administrators time to dete
t intru-sions. For intrusions dete
ted within this window,all of the version and audit information is availablefor analysis and re
overy. The 
riti
al di�eren
e be-tween self-se
uring storage and host-
ontrolled ver-sioning (e.g., Elephant [29℄) is that intruders 
an nolonger bypass the versioning software by 
ompromis-ing 
omplex OSes or their poorly-prote
ted user a
-
ounts. Instead, intruders must 
ompromise single-purpose devi
es that export only a simple storageinterfa
e, and in some 
on�gurations, they may haveto 
ompromise both.This paper des
ribes self-se
uring storage and ourimplementation of a self-se
uring storage server,
alled S4. A number of 
hallenges arise when stor-age devi
es distrust their 
lients. Most importantly,it may be diÆ
ult to keep all versions of all data foran extended period of time, and it is not a

eptableto trust the 
lient to spe
ify what is important tokeep. Fortunately, storage densities in
rease fasterthan most 
omputer 
hara
teristi
s (100%+ per an-num in re
ent years). Analysis of re
ent workloadstudies [29, 34℄ suggests that it is possible to ver-



www.manaraa.com

sion all data on modern 30{100GB drives for severalweeks. Further, aggressive 
ompression and 
ross-version di�eren
ing te
hniques 
an extend the intru-sion dete
tion window o�ered by self-se
uring stor-age devi
es. Other 
hallenges in
lude eÆ
iently en-
oding the many metadata 
hanges, a
hieving se
ureadministrative 
ontrol, and dealing with denial-of-servi
e atta
ks.The S4 system addresses these 
hallenges with anew storage management stru
ture. Spe
i�
ally, S4uses a log-stru
tured obje
t system for data ver-sions and a novel journal-based stru
ture for meta-data versions. In addition to redu
ing spa
e utiliza-tion, journal-based metadata simpli�es ba
kground
ompa
tion and reorganization for blo
ks shareda
ross many versions. Experiments with S4 showthat the se
urity and data survivability bene�ts ofself-se
uring storage 
an be realized with reason-able performan
e. Spe
i�
ally, the performan
e ofS4-enhan
ed NFS is 
omparable to FreeBSD's NFSfor both mi
ro-ben
hmarks and appli
ation ben
h-marks. The fundamental 
osts asso
iated with self-se
uring storage degrade performan
e by less than13% relative to similar systems that provide no dataprote
tion guarantees.The remainder of this paper is organized as follows.Se
tion 2 dis
usses intrusion survival and re
overydiÆ
ulties in greater detail. Se
tion 3 des
ribes howself-se
uring storage addresses these issues, identi-�es some 
hallenges inherent to self-se
uring storage,and dis
usses design solutions for addressing them.Se
tion 4 des
ribes the implementation of S4. Se
-tion 5 evaluates the performan
e and 
apa
ity over-heads of self-se
uring storage. Se
tion 6 dis
ussesa number of issues related to self-se
uring storage.Se
tion 7 dis
usses related work. Se
tion 8 summa-rizes this paper's 
ontributions.2 Intrusion Diagnosis and Re
overyUpon gaining a

ess to a system, an intruder hasseveral avenues of mis
hief. Most intruders attemptto destroy eviden
e of their presen
e by erasing ormodifying system log �les. Many intruders also in-stall ba
k doors in the system, allowing them to gaina

ess at will in the future. They may also installother software, read and modify sensitive �les, oruse the system as a platform for laun
hing addi-tional atta
ks. Depending on the skill with whi
hthe intruders hide their presen
e, there will be somedete
tion laten
y before the intrusion is dis
overedby an automated intrusion dete
tion system (IDS)or by a suspi
ious user or administrator. During this

time, the intruders 
an 
ontinue their mali
ious a
-tivities while users 
ontinue to use the system, thusentangling legitimate 
hanges with those of the in-truders. On
e an intrusion has been dete
ted anddis
ontinued, the system administrator is left withtwo diÆ
ult tasks: diagnosis and re
overy.Diagnosis is 
hallenging be
ause intruders 
an usu-ally 
ompromise the \administrator" a

ount onmost operating systems, giving them full 
ontrolover all resour
es. In parti
ular, this gives themthe ability to manipulate everything stored on thesystem's disks, in
luding audit logs, �le modi�
a-tion times, and tamper dete
tion utilities. Re
ov-ery is diÆ
ult be
ause diagnosis is diÆ
ult and be-
ause user-
onvenien
e is an important issue. Thisse
tion dis
usses intrusion diagnosis and re
overy ingreater detail, and the next se
tion des
ribes howself-se
uring storage addresses them.2.1 DiagnosisIntrusion diagnosis 
onsists of three phases: dete
t-ing the intrusion, dis
overing what weaknesses wereexploited (for future prevention), and determiningwhat the intruder did. All are diÆ
ult when theintruder has free reign over storage and the OS.Without the ability to prote
t storage from 
ompro-mised operating systems, intrusion dete
tion maybe limited to alert users and system administratorsnoti
ing odd behavior. Examining the system logsis the most 
ommon approa
h to intrusion dete
-tion [7℄, but when intruders 
an manipulate the log�les, su
h an approa
h is not useful. Some intrusiondete
tion systems also look for 
hanges to importantsystem �les [16℄. Su
h systems are vulnerable to in-truders that 
an 
hange what the IDS thinks is a\safe" 
opy.Determining how an intruder 
ompromised the sys-tem is often impossible in 
onventional systems, be-
ause he will s
rub the system logs. In addition,any exploit tools (utilities for 
ompromising 
om-puter systems) that may have been stored on thetarget ma
hine for use in multi-stage intrusions areusually deleted. The 
ommon \solutions" are to tryto 
at
h the intruder in the a
t or to hope that heforgot to delete his exploit tools.The last step in diagnosing an intrusion is to dis
overwhat was a

essed and modi�ed by the intruder.This is diÆ
ult, be
ause �le a

ess and modi�
a-tion times 
an be 
hanged and system log �les 
anbe do
tored. In addition, 
he
ksum databases areof limited use, sin
e they are e�e
tive only for stati
�les.



www.manaraa.com

2.2 Re
overyBe
ause it is usually not possible to diagnose anintruder's a
tivities, full system re
overy generallyrequires that the 
ompromised ma
hine be wiped
lean and reinstalled from s
rat
h. Prior to erasingthe entire state of the system, users may insist thatdata, modi�ed sin
e the intrusion, be saved. Themore e�ort that went into 
reating the 
hanges, themore motivation there is to keep this data. Unfortu-nately, as the size and 
omplexity of the data grows,the likelihood that tampering will go unnoti
ed in-
reases. Foolproof assessment of the modi�ed datais very diÆ
ult, and overlooked tampering may hidetainted information or a ba
k door inserted by theintruder.Upon restoring the OS and any appli
ations on thesystem, the administrator must identify a ba
kupthat was made prior to the intrusion; the most re-
ent ba
kup may not be usable. After restoring datafrom a pre-intrusion ba
kup, the legitimately mod-i�ed data 
an be restored to the system, and usersmay resume using the system. This pro
ess oftentakes a 
onsiderable amount of time|time duringwhi
h users are denied servi
e.
3 Self-Se
uring StorageSelf-se
uring storage ensures information survivaland auditing of all a

esses by establishing a se
u-rity perimeter around the storage devi
e. Conven-tional storage devi
es are slaves to host operatingsystems, relying on them to prote
t users' data. Aself-se
uring storage devi
e operates as an indepen-dent entity, tasked with the responsibility of not onlystoring data, but prote
ting it. This shift of stor-age se
urity fun
tionality into the storage devi
e's�rmware allows data and audit information to besafeguarded in the presen
e of �le server and 
lientsystem intrusions. Even if the OSes of these sys-tems are 
ompromised and an intruder is able toissue 
ommands dire
tly to the self-se
uring storagedevi
e, the new se
urity perimeter remains inta
t.Behind the se
urity perimeter, the storage devi
eensures data survival by keeping previous versionsof the data. This history pool of old data versions,
ombined with the audit log of a

esses, 
an be usedto diagnose and re
over from intrusions. This se
-tion dis
usses the bene�ts of self-se
uring storageand several 
ore design issues that arise in realizingthis type of devi
e.

3.1 Enabling intrusion survivalSelf-se
uring storage assists in intrusion re
overy byallowing the administrator to view audit informationand qui
kly restore modi�ed or deleted �les. Theaudit and version information also helps to diagnoseintrusions and dete
t the propagation of mali
iouslymodi�ed data.Self-se
uring storage simpli�es dete
tion of an in-trusion sin
e versioned system logs 
annot be im-per
eptibly altered. In addition, modi�ed systemexe
utables are easily noti
ed. Be
ause of this, self-se
uring storage makes 
onventional tamper dete
-tion systems obsolete.Sin
e the administrator has the 
omplete pi
ture ofthe system's state, from intrusion until dis
overy, itis 
onsiderably easier to establish the method usedto gain entry. For instan
e, the system logs wouldhave normally been do
tored, but by examining theversioned 
opies of the logs, the administrator 
ansee any messages that were generated during the in-trusion and later removed. In addition, any exploittools temporarily stored on the system 
an be re
ov-ered.Previous versions of system �les, from before theintrusion, 
an be qui
kly and easily restored by res-urre
ting them from the history pool. This preventsthe need for a 
omplete re-installation of the operat-ing system, and it does not rely on having a re
entba
kup or up-to-date 
he
ksums (for tamper dete
-tion) of system �les. After su
h restoration, 
riti
aldata 
an be in
rementally re
overed from the historypool. Additionally, by utilizing the storage devi
e'saudit log, it is possible to assess whi
h data mighthave been dire
tly a�e
ted by the intruder.The data prote
tion that self-se
uring storage pro-vides allows easy dete
tion of modi�
ations, sele
-tive re
overy of tampered �les, prevention of dataloss due to out-of-date ba
kups, and speedy re
ov-ery sin
e data need not be loaded from an o�-linear
hive.3.2 Devi
e se
urity perimeterThe devi
e's se
urity model is what makes the abil-ity to keep old versions more than just a user 
on-venien
e. The se
urity perimeter 
onsists of self-
ontained software that exports only a simple stor-age interfa
e to the outside world and veri�es ea
h
ommand's integrity before pro
essing it. In 
on-trast, most �le servers and 
lient ma
hines run amultitude of servi
es that are sus
eptible to atta
k.Sin
e the self-se
uring storage devi
e is a single-
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fun
tion devi
e, the task of making it se
ure is mu
heasier; 
ompromising its �rmware is analogous tobreaking into an IDE or SCSI disk.The a
tual proto
ol used to 
ommuni
ate with thestorage devi
e does not a�e
t the data integrity thatthe new se
urity perimeter provides. The 
hoi
e ofproto
ol does, however, a�e
t the usefulness of theaudit log in terms of the a
tions it 
an re
ord and its
orre
tness. For instan
e, the NFS proto
ol providesno authenti
ation or integrity guarantees, thereforethe audit log may not be able to a

urately linka request with its originating 
lient. Nonetheless,the prin
iples of self-se
uring storage apply equallyto \enhan
ed" disk drives, network-atta
hed storageservers, and �le servers.For network-atta
hed storage devi
es (as opposed todevi
es atta
hed dire
tly to a single host system),the new se
urity perimeter be
omes more useful ifthe devi
e 
an verify ea
h a

ess as 
oming fromboth a valid user and a valid 
lient. Su
h veri�
ationallows the devi
e to enfor
e a

ess 
ontrol de
isionsand partially tra
k propagation of tainted data. If
lients and users are authenti
ated, a

esses 
an betra
ked to a single 
lient ma
hine, and the devi
e'saudit log 
an yield the s
ope of dire
t damage fromthe intrusion of a given ma
hine or user a

ount.3.3 History pool managementThe old versions of obje
ts kept by the devi
e 
om-prise the history pool. Every time an obje
t ismodi�ed or deleted, the version that existed justprior to the modi�
ation be
omes part of the his-tory pool. Eventually an old version will age andhave its spa
e re
laimed. Be
ause 
lients 
annot betrusted to demar
ate versions 
onsisting of multiplemodi�
ations, a separate version should be kept forevery modi�
ation. This is in 
ontrast to versioning�le systems that generally 
reate new versions onlywhen a �le is 
losed.A self-se
uring storage devi
e guarantees a lowerbound on the amount of time that a depre
ated ob-je
t remains in the history pool before it is re
laimed.During this window of time, the old version of theobje
t 
an be 
ompletely restored by requesting thatthe drive 
opy forward the old version, thus mak-ing a new version. The guaranteed window of timeduring whi
h an obje
t 
an be restored is 
alled thedete
tion window. When determining the size of thiswindow, the administrator must examine the trade-o� between the dete
tion laten
y provided by a largewindow and the extra disk spa
e that is 
onsumedby the proportionally larger history pool.

Although the 
apa
ity of disk drives is growing ata remarkable rate, it is still �nite, whi
h poses twoproblems:1. Providing a reasonable dete
tion window in ex-
eptionally busy systems.2. Dealing with mali
ious users that attempt to�ll the history pool. (Note that spa
e ex-haustion atta
ks are not unique to self-se
uringstorage. However, devi
e-managed versioningmakes 
onventional user quotas ine�e
tive forlimiting them.)In a busy system, the amount of data written 
ouldmake providing a reasonable dete
tion window dif-�
ult. Fortunately, the analysis in Se
tion 5.2 sug-gests that multi-week dete
tion windows 
an be pro-vided in many environments at a reasonable 
ost.Further, aggressive 
ompression and di�eren
ing ofold versions 
an signi�
antly extend the dete
tionwindow.Deliberate attempts to over
ow the history pool 
an-not be prevented by simply in
reasing the spa
eavailable. As with most denial of servi
e atta
ks,there is no perfe
t solution. There are three 
awedapproa
hes to addressing this type of abuse. The�rst is to have the devi
e re
laim the spa
e held bythe oldest obje
ts when the history pool is full. Un-fortunately, this would allow an intruder to destroyinformation by 
ausing its previous instan
es to bere
laimed from the over
owing history pool. These
ond 
awed approa
h is to stop versioning obje
tswhen the history pool �lls; although this will allowre
overy of old data, system administrators wouldno longer be able to diagnose the a
tions of an in-truder or di�erentiate them from subsequent legiti-mate 
hanges. The third 
awed approa
h is for thedrive to deny any a
tion that would require addi-tional versions on
e the history pool �lls; this wouldresult in denial of servi
e to all users (legitimate ornot).Our hybrid approa
h to this problem is to try to pre-vent the history pool from being �lled by dete
tingprobable abuses and throttling the sour
e ma
hine'sa

esses. This allows human intervention beforethe system is for
ed to 
hoose from the above pooralternatives. Sele
tively in
reasing laten
y and/orde
reasing bandwidth allows well-behaved users to
ontinue to use the system even while it is under at-ta
k. Experien
e will show how well this works inpra
ti
e.Sin
e the history pool will be used for intrusion di-agnosis and re
overy, not just re
overing from a

i-
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dental destru
tion of data, it is diÆ
ult to 
onstru
ta safe algorithm that would save spa
e in the his-tory pool by pruning versions within the dete
tionwindow. Almost any algorithm that sele
tively re-moves versions has the potential to be abused byan intruder to 
over his tra
ks and to su

essfullydestroy/modify information during a break-in.3.4 History pool a

ess 
ontrolThe history pool 
ontains a wealth of informationabout the system's re
ent a
tivity. This makes a
-
essing the history pool a sensitive operation, sin
eit allows the resurre
tion of deleted and overwrit-ten obje
ts. This is a standard problem posed byversioning �le systems, but is exa
erbated by theinability to sele
tively delete versions.There are two basi
 approa
hes that 
an be takentoward a

ess 
ontrol for the history pool. The �rstis to allow only a single administrative entity to havethe power to view and restore items from the historypool. This 
ould be useful in situations where theold data is 
onsidered to be highly sensitive. Havinga single tightly-
ontrolled key for a

essing histori
aldata de
reases the likelihood of an intruder gaininga

ess to it. Although this improves se
urity, it pre-vents users from being able to re
over from theirown mistakes, thus 
onsuming the administrator'stime to restore users' �les. The se
ond approa
his to allow users to re
over their own old obje
ts(in addition to the administrator). This providesthe 
onvenien
e of a user being able to re
over theirdeleted data easily, but also allows an intruder, whoobtains valid 
redentials for a given user, to re
overthat user's old �le versions.Our 
ompromise is to allow users to sele
tively makethis de
ision. By 
hoi
e, a user 
ould thus delete anobje
t, version, or all versions from visibility by any-one other than the administrator, sin
e permanentdeletion of data via any other method than agingwould be unsafe. This 
hoi
e allows users to en-joy the bene�ts of versioning for presentations andsour
e 
ode, while preventing a

ess to visible ver-sions of embarrassing images or unsent e-mail drafts.3.5 Administrative a

essA method for se
ure administrative a

ess is neededfor the ne
essary but dangerous 
ommands that aself-se
uring storage devi
e must support. Su
h
ommands in
lude setting the guaranteed dete
tionwindow, erasing parts of the history pool, and a
-
essing data that users have marked as \unre
over-able." Su
h administrative a

ess 
an be se
urely

granted in a number of ways, in
luding physi
al a
-
ess (e.g., 
ipping a swit
h on the devi
e) or well-prote
ted 
ryptographi
 keys.Administrative a

ess is not ne
essary for users at-tempting to re
over their own �les from a

idents.Users' a

esses to the history pool should be han-dled with the same form of prote
tion used for theirnormal a

esses. This is a

eptable for user a
tivity,sin
e all a
tions permitted for ordinary users 
an beaudited and repaired.3.6 Version and administration toolsSin
e self-se
uring storage devi
es store versions ofraw data, users and administrators will need assis-tan
e in parsing the history pool. Tools for travers-ing the history must assist by bridging the gap be-tween standard �le interfa
es and the raw versionsthat are stored by the devi
e. By being aware ofboth the versioning system and formats of the dataobje
ts, utilities 
an present interfa
es similar tothat of Elephant [29℄, with \time-enhan
ed" versionsof standard utilities su
h as ls and 
p. This is a
-
omplished by extending the read interfa
es of thedevi
e to in
lude an optional time parameter. Whenthis parameter is spe
i�ed, the drive returns datafrom the version of the obje
t that was valid at therequested time.In addition to providing a simple view of data ob-je
ts in isolation, intrusion diagnosis tools 
an utilizethe audit log to provide an estimate of damage. Forinstan
e, it is possible to see all �les and dire
to-ries that a 
lient modi�ed during the period of timethat it was 
ompromised. Further estimates of thepropagation of data written by 
ompromised 
lientsare also possible, though imperfe
t. For example,diagnosis tools may be able to establish a link be-tween obje
ts based on the fa
t that one was readjust before another was written. Su
h a link betweena sour
e �le and its 
orresponding obje
t �le wouldbe useful if a user determines that a sour
e �le hadbeen tampered with; in this situation, the obje
t �leshould also be restored or removed. Exploration ofsu
h tools will be an important area of future work.4 S4 ImplementationS4 is a self-se
uring storage server that transpar-ently maintains an eÆ
ient obje
t-versioning systemfor its 
lients. It aims to perform 
omparably with
urrent systems, while providing the bene�ts of self-se
uring storage and minimizing the 
orrespondingspa
e explosion.
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RPC Type AllowsTime-BasedA

ess Des
riptionCreate no Create an obje
tDelete no Delete an obje
tRead yes Read data from an obje
tWrite no Write data to an obje
tAppend no Append data to the end of an obje
tTrun
ate no Trun
ate an obje
t to a spe
i�ed lengthGetAttr yes Get the attributes of an obje
t (S4-spe
i�
 and opaque)SetAttr no Set the opaque attributes of an obje
tGetACLByUser yes Get an ACL entry for an obje
t given a spe
i�
 UserIDGetACLByIndex yes Get an ACL entry for an obje
t by its index in the obje
t's ACLtableSetACL no Set an ACL entry for an obje
tPCreate no Create a partition (asso
iate a name with an Obje
tID)PDelete no Delete a partition (remove a name/Obje
tID asso
iation)PList yes List the partitionsPMount yes Retrieve the Obje
tID given its nameSyn
 not appli
able Syn
 the entire 
a
he to diskFlush not appli
able Removes all versions of all obje
ts between two timesFlushO not appli
able Removes all versions of an obje
t between two timesSetWindow not appli
able Adjusts the guaranteed dete
tion window of the S4 devi
eTable 1: S4 Remote Pro
edure Call List { Operations that support time-based a

ess a

ept a time in addition to thenormal parameters; this time is used to �nd the appropriate version in the history pool. Note that all modi�
ations 
reate newversions without a�e
ting the previous versions.4.1 A self-se
uring obje
t storeS4 is a network-atta
hed obje
t store with an in-terfa
e similar to re
ent obje
t-based disk propos-als [9, 24℄. This interfa
e simpli�es a

ess 
ontroland internal performan
e enhan
ement relative to astandard blo
k interfa
e.In S4, obje
ts exist in a 
at namespa
e managedby the \drive" (i.e., the obje
t store). When ob-je
ts are 
reated, they are given a unique identi�er(Obje
tID) by the drive, whi
h is used by the 
lientfor all future referen
es to that obje
t. Ea
h obje
thas an a

ess 
ontrol stru
ture that spe
i�es whi
hentities (users and 
lient ma
hines) have permissionto a

ess the obje
t. Obje
ts also have metadata, �ledata, and opaque attribute spa
e (for use by 
lient�le systems) asso
iated with them.To enable persistent mount points, a S4 drive sup-ports \named obje
ts." The obje
t names are anasso
iation of an arbitrary ASCII string with a par-ti
ular Obje
tID. The table of named obje
ts is im-plemented as a spe
ial S4 obje
t a

essed through

dedi
ated partition manipulation RPC 
alls. Thistable is versioned in the same manner as other ob-je
ts on the S4 drive.4.1.1 S4 RPC interfa
eTable 1 lists the RPC 
ommands supported by theS4 drive. The read-only 
ommands (read, getattr,geta
l, plist, and pmount) a

ept an optional timeparameter. When the time is provided, the driveperforms the read request on the version of the ob-je
t that was \most 
urrent" at the time spe
i�ed,provided that the user making the request has suÆ-
ient privileges.The ACLs asso
iated with obje
ts have the tradi-tional set of 
ags, with one addition|the Re
overy
ag. The Re
overy 
ag determines whether or not agiven user may read (re
over) an obje
t version fromthe history pool on
e it is overwritten or deleted.When this 
ag is 
lear, only the devi
e administratormay read this obje
t version on
e it is pushed into
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the history pool. The Re
overy 
ag allows users tode
ide the sensitivity of old versions on a �le-by-�lebasis.4.1.2 S4/NFS translationSin
e one goal of self-se
uring storage is to providean enhan
ed level of se
urity and 
onvenien
e onexisting systems, the prototype minimizes 
hangesto 
lient systems. In keeping with this philosophy,the S4 drive is network-atta
hed and an \S4 
lient"daemon serves as a user-level �le system transla-tor (Figure 1a). The S4 
lient translates requestsfrom a �le system on the target OS to S4-spe
i�
requests for obje
ts. Be
ause it runs as a user-levelpro
ess, without operating systemmodi�
ations, theS4 
lient should port to di�erent systems easily.The S4 
lient 
urrently has the ability to trans-late NFS version 2 requests to S4 requests. TheS4 
lient appears to the lo
al workstation as a NFSserver. This emulated NFS server is mounted viathe loopba
k interfa
e to allow only that worksta-tion a

ess to the S4 
lient. The 
lient re
eives theNFS requests and translates them into S4 opera-tions. NFSv2 was 
hosen over version 3 be
ause its
lient is well-supported within Linux, and its la
k ofwrite 
a
hing allows the drive to maintain a detaileda

ount of 
lient a
tions.Figure 1 shows two approa
hes to using the S4 
lientto serve NFS requests with the S4 drive. The �rstpla
es the S4 
lient on the 
lient system, as des
ribedpreviously, and uses the S4 drive as a network-atta
hed storage devi
e. The se
ond in
orporatesthe S4 
lient fun
tionality into the server, as a NFS-to-S4 translator. This 
on�guration a
ts as a S4-enhan
ed NFS server (Figure 1b) for normal �le sys-tem a
tivity, but re
overy must still be a

omplishedthrough the S4 proto
ol sin
e the NFS proto
ol hasno notion of \time-based" a

ess.The implementation of the NFS �le system overlays�les and dire
tories on top of S4 obje
ts. Obje
tsused as dire
tories 
ontain a list of ASCII �lenamesand their asso
iated NFS �le handles. Obje
ts usedas �les and symlinks 
ontain the 
orresponding data.The NFS attribute stru
ture is maintained withinthe opaque attribute spa
e of ea
h obje
t.When the S4 
lient re
eives a NFS request, the NFS�le handle (previously 
onstru
ted by the S4 
lient)
an be dire
tly hashed into the Obje
tID of the di-re
tory or �le. The S4 
lient 
an then make requestsdire
tly to the drive for the desired data.

S4 DriveApplication
Client

Kernel

Client

S4 Client

S4 RPCNFS

Kernel

RPC

S4 RPC

Drive

(a) Baseline S4 (network-attached object store)

Client Drive

Kernel Kernel

Application S4 Drive

NFS

S4 RPCNFS S4 RPC

Client S4-NFS
Translator

(b) S4-enhanced NFS serverFigure 1: Two S4 Con�gurations { This �gure shows twoS4 
on�gurations that provide self-se
uring storage via a NFSinterfa
e. (a) shows S4 as a network-atta
hed obje
t storewith the S4 
lient daemon translating NFS requests to S4-spe
i�
 RPCs. (b) shows a self-se
uring NFS server 
reatedby 
ombining the NFS-to-S4 translation and the S4 drive.To support NFSv2 semanti
s, the 
lient sends an ad-ditional RPC to the drive to 
ush bu�ered writes tothe disk at the end of ea
h NFS operation that mod-i�es the state of one or more obje
ts. Sin
e this RPCdoes not return until the syn
hronization is 
om-plete, NFSv2 semanti
s are supported even thoughthe drive normally 
a
hes writes.Be
ause the 
lient overlays a �le system on top ofthe 
at obje
t namespa
e, some �le system oper-ations require several drive operations (and hen
eRPC 
alls). These sets of operations are analogousto the operations that �le systems must performon blo
k-based devi
es. To minimize the numberof RPC 
alls ne
essary, the S4 
lient aggressivelymaintains attribute and dire
tory 
a
hes (for readsonly). The drive also supports bat
hing of setattr,getattr, and syn
 operations with 
reate, read,write, and append operations.4.2 S4 drive internalsThe main goals for the S4 drive implementationare to avoid performan
e overhead and to minimizewasted spa
e, while keeping all versions of all obje
tsfor a given period of time. A
hieving these goals re-
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quires a 
ombination of known and novel te
hniquesfor organizing on-disk data.4.2.1 Log-stru
turing for eÆ
ient writesSin
e data within the history pool 
annot be over-written, the S4 drive uses a log stru
ture similar toLFS [27℄. This stru
ture allows multiple data andmetadata updates to be 
lustered into fewer, largerwrites. Importantly, it also obviates any need tomove previous versions before writing.In order to prune old versions and re
laim unusedsegments, S4 in
ludes a ba
kground 
leaner. Whilethe goal of this 
leaner is similar to that of the LFS
leaner, the design must be slightly di�erent. Spe
if-i
ally, depre
ated obje
ts 
annot be re
laimed unlessthey have also aged out of the history pool. There-fore, the S4 
leaner sear
hes through the obje
t mapfor obje
ts with an oldest time greater than the de-te
tion window. On
e a suitable obje
t is found,the 
leaner permanently frees all data and meta-data older than the window. If this 
lears all ofthe resour
es within a segment, the segment 
an bemarked as free and used as a fresh segment for fore-ground a
tivity.4.2.2 Journal-based metadataTo eÆ
iently keep all versions of obje
t metadata,S4 uses journal-based metadata, whi
h repla
es mostinstan
es of metadata with 
ompa
t journal entries.Be
ause 
lients are not trusted to notify S4 whenobje
ts are 
losed, every update 
reates a new ver-sion and thus new metadata. For example, whendata pointed to by indire
t blo
ks is modi�ed, theindire
t blo
ks must be versioned as well. In a 
on-ventional versioning system, a single update to atriple-indire
t blo
k 
ould require four new blo
ksas well as a new inode. Early experiments with thistype of versioning system showed that modifying alarge �le 
ould 
ause up to a 4x growth in disk us-age. Conventional versioning �le systems avoid thisperforman
e problem by only 
reating new versionswhen a �le is 
losed.In order to signi�
antly redu
e these problems, S4en
odes metadata 
hanges in a journal that is main-tained for the duration of the dete
tion window. Bypersistently keeping journal entries of all metadata
hanges, metadata writes 
an be safely delayed and
oales
ed, sin
e individual inode and indire
t blo
kversions 
an be re
reated from the journal. To avoid
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ien
y of Metadata Versioning { Theabove �gure 
ompares metadata management in a 
onven-tional versioning system to S4's journal-based metadata ap-proa
h. When writing to an indire
t blo
k, a 
onventionalversioning system allo
ates a new data blo
k, a new indire
tblo
k, and a new inode. Also, the identity of the new in-ode must be re
orded (e.g., in an Elephant-like inode log).With journal-based metadata, a single journal entry suÆ
es,pointing to both the new and old data blo
ks.rebuilding an obje
t's 
urrent state from the jour-nal during normal operation, an obje
t's metadatais 
he
kpointed to a log segment before being evi
tedfrom the 
a
he. Unlike 
onventional journaling, su
h
he
kpointing does not prune journal spa
e; only ag-ing may prune spa
e. Figure 2 depi
ts the di�eren
ein disk spa
e usage between journal-based metadataand 
onventional versioning when writing data to anindire
t data blo
k.In addition to the entries needed to des
ribe meta-data 
hanges, a 
he
kpoint entry is needed. This
he
kpoint entry denotes writing a 
onsistent 
opyof all of an obje
t's metadata to disk. It is ne
essaryto have at least one 
he
kpoint of an obje
t's meta-data on disk at all times, sin
e this is the startingpoint for all time-based and 
rash re
overy re
re-ations.Storing an obje
t's 
hanges within the log is done us-ing journal se
tors. Ea
h journal se
tor 
ontains thepa
ked journal entries that refer to a single obje
t's
hanges made within that segment. The se
tors areidenti�ed by segment summary information. Jour-nal se
tors are 
hained together ba
kward in time toallow for version re
onstru
tion.Journal-based metadata 
an also simplify 
ross-version di�erential 
ompression [3℄. Sin
e the blo
ks
hanged between versions are noted within ea
h en-try, it is easy to �nd the blo
ks that should be 
om-



www.manaraa.com

pared. On
e the di�eren
ing is 
omplete, the oldblo
ks 
an be dis
arded, and the di�eren
e left inits pla
e. For subsequent reads of old versions, thedata for ea
h blo
k must be re
reated as the en-tries are traversed. Cross-version di�eren
ing of olddata will often be e�e
tive in redu
ing the amountof spa
e used by old versions. Adding di�eren
ingte
hnology into the S4 
leaner is an area of futurework.4.2.3 Audit logIn addition to maintaining previous obje
t versions,S4 maintains an append-only audit log of all re-quests. This log is implemented as a reserved obje
twithin the drive that 
annot be modi�ed ex
ept bythe drive itself. However, it 
an be read via RPC op-erations. The data written to the audit log in
ludes
ommand arguments as well as the originating 
lientand user. All RPC operations (read, write, and ad-ministrative) are logged. Sin
e the audit log mayonly be written by the drive front end, it need notbe versioned, thus in
reasing spa
e eÆ
ien
y and de-
reasing performan
e 
osts.5 Evaluation of self-se
uring storageThis se
tion evaluates the feasibility of self-se
uringstorage. Experiments with S4 indi
ate that 
ompre-hensive versioning and auditing 
an be performedwithout a signi�
ant performan
e impa
t. Also, es-timates of 
apa
ity growth, based on reported work-load 
hara
terizations, indi
ate that history win-dows of several weeks 
an easily be supported inseveral real environments.5.1 Performan
eThe main performan
e goal for S4 is to be 
ompara-ble to other networked �le systems while o�ering en-han
ed se
urity features. This se
tion demonstratesthat this goal is a
hieved and also explores the over-heads spe
i�
ally asso
iated with self-se
uring stor-age features.5.1.1 Experimental SetupThe four systems used in the experiments had thefollowing 
on�gurations: (1) a S4 drive runningon RedHat 6.1 Linux 
ommuni
ating with a Linux
lient over S4 RPC through the S4 
lient module(Figure 1a), (2) a S4-enhan
ed NFS server running

on RedHat 6.1 Linux 
ommuni
ating with a Linux
lient over NFS (Figure 1b), (3) a FreeBSD 4.0server 
ommuni
ating with a Linux 
lient over NFS,and (4) a RedHat 6.1 Linux server 
ommuni
atingwith a Linux 
lient over NFS. Sin
e Linux NFS doesnot 
omply with the NFSv2 semanti
s of 
ommit-ting data to stable storage before operation 
om-pletion, the Linux server's �le system was mountedsyn
hronously to approximate NFS semanti
s. In all
ases, NFS was 
on�gured to use 4KB read/writetransfer sizes, the only option supported by Linux.The FreeBSD NFS 
on�guration exports a BSD FFS�le system, while the Linux NFS 
on�guration ex-ports an ext2 �le system. All experiments were run�ve times and have a standard deviation of less than3% of the mean. The S4 drives were 
on�gured witha 128MB bu�er 
a
he and a 32MB obje
t 
a
he. TheLinux and FreeBSD NFS servers' 
a
hes 
ould growto �ll lo
al memory (512MB).In all experiments, the 
lient system has a 550MHzPentium III, 128MB RAM, and a 3Com 3C905B100Mb network adapter. The servers have a 600MHzPentium III, 512MB RAM, a 9GB 10; 000RPM Ul-tra2 SCSI Seagate Cheetah drive, an Adapte
 AIC-7896/7 Ultra2 SCSI 
ontroller, and an Intel Ether-Express Pro100 100Mb network adapter. The 
lientand server are on the same subnet and are 
onne
tedby a 100Mb network swit
h. All versions of Linuxuse an unmodi�ed 2.2.14 kernel, and the BSD sys-tem uses a sto
k FreeBSD 4.0 installation.To evaluate performan
e for 
ommon workloads,results from two appli
ation ben
hmarks are pre-sented: the PostMark ben
hmark [14℄ and the SSH-build ben
hmark [36℄. These ben
hmarks 
rudelyrepresent Internet server and software developmentworkloads, respe
tively.PostMark was designed to measure the performan
eof a �le system used for ele
troni
 mail, netnews,and web based servi
es. It 
reates a large num-ber of small randomly-sized �les (between 512B and9KB) and performs a spe
i�ed number of transa
-tions on them. Ea
h transa
tion 
onsists of two sub-transa
tions, with one being a 
reate or delete andthe other being a read or append. The default 
on-�guration used for the experiments 
onsists of 20,000transa
tions on 5,000 �les, and the biases for trans-a
tion type are equal.The SSH-build ben
hmark was 
onstru
ted as arepla
ement for the Andrew �le system ben
h-mark [12℄. It 
onsists of 3 phases: The unpa
k phase,whi
h unpa
ks the 
ompressed tar ar
hive of SSHv1.2.27 (approximately 1MB in size before de
om-
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Figure 3: PostMark Ben
hmarkpression), stresses metadata operations on �les ofvarying sizes. The 
on�gure phase 
onsists of theautomati
 generation of header �les and Make�les,whi
h involves building various small programs that
he
k the existing system 
on�guration. The buildphase 
ompiles, links, and removes temporary �les.This last phase is the most CPU intensive, but italso generates a large number of obje
t �les and afew exe
utables.
5.1.2 Comparison of the serversTo gauge the overall performan
e of S4, the foursystems des
ribed earlier were 
ompared. As hoped,S4 performs 
omparably to the existing NFS servers.Figure 3 shows the results of the PostMark ben
h-mark. The times for both the 
reation (time to 
re-ate the initial 5000 �les) and transa
tion phases ofPostMark are shown for ea
h system. The S4 sys-tems' performan
e is similar to both BSD and LinuxNFS performan
e, doing slightly better due to theirlog stru
tured layout.The times of SSH-build's three phases are shownin Figure 4. Performan
e is similar a
ross the S4and BSD 
on�gurations. The superior performan
eof the Linux NFS server in the 
on�gure stage is dueto a mu
h lower number of write I/Os than in theBSD and S4 servers, apparently due to a 
aw in thesyn
hronous mount option under Linux.
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Figure 4: SSH-build Ben
hmark
5.1.3 Overhead of the S4 
leanerIn addition to the more visible pro
ess of 
reatingnew versions, S4 must eventually garbage 
olle
tdata that has expired from the history pool. Thisgarbage 
olle
tion 
omes at a 
ost. The potentialoverhead of the 
leaner was measured by runningthe PostMark ben
hmark with 50,000 transa
tionson in
reasingly large sets of initial �les. For ea
h setof initial �les, the ben
hmark was run on
e with the
leaner disabled and on
e with the 
leaner 
ompet-ing with foreground a
tivity.The results shown in Figure 5 represent PostMarkrunning with the initial set of �les �lling between2% and 90% of a 2GB disk. As expe
ted, when theworking set in
reases, performan
e of the normal S4system degrades due to in
reasingly poor 
a
he anddisk lo
ality. The sharp drop in the graph from 2%to 10% is 
aused by the fa
t that the set of �lesand data expands beyond the bounds of the drive's
a
he.Although the S4 
leaner is slightly di�erent, it wasexpe
ted to behave similarly to a standard LFS
leaner, whi
h has up to an approximate 34% de-
rease in performan
e [30℄. The S4 
leaner is slightlymore intrusive, degrading performan
e by approxi-mately 50% in the worst 
ase. The greater degra-dation is attributed mainly to the additional readsne
essary when 
leaning obje
ts rather than seg-ments. In addition, the S4 
leaner has not beentuned and does not in
lude known te
hniques forredu
ing 
leaner performan
e problems [21℄.
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Figure 5: Overhead of foreground 
leaning in S4 {This �gure shows the transa
tion performan
e of S4 runningthe PostMark ben
hmark with varying 
apa
ity utilizations.The solid line shows system performan
e on a system without
leaning. The dashed line shows system performan
e in thepresen
e of 
ontinuous foreground 
leaner a
tivity.5.1.4 Overhead of the S4 audit logIn addition to versioning, self-se
uring storage de-vi
es keep an audit log of all 
onne
tions and 
om-mands sent to the drive. Re
ording this audit logof events has some 
ost. In the worst 
ase, all datawritten to the disk belongs to the audit log. In this
ase, one disk write is expe
ted approximately ev-ery 750 operations. In the best 
ase, large writes,the audit log overhead is almost non-existent, sin
ethe writes of the audit log blo
ks are hidden inthe segment writes of the requests. For the ma
ro-ben
hmarks, the performan
e penalty ranged be-tween 1% and 3%.For a more fo
used view of this overhead, a set ofmi
ro-ben
hmarks were run with audit logging en-abled and disabled. The mi
ro-ben
hmarks pro
eedin three phases: 
reation of 10,000 1KB �les (splita
ross 10 dire
tories), reads of the newly 
reated �lesin 
reation order, and deletion of the �les in 
reationorder.Figure 6 shows the results. The 
reate and deletephases exhibit a 2.8% and 2.9% de
rease in perfor-man
e, respe
tively, and the read phase exhibits a7.2% de
rease in performan
e. Read performan
esu�ers a larger penalty be
ause the audit log blo
ksbe
ome interwoven with the data blo
ks in the 
reatephase. This redu
es the number of �les pa
ked intoea
h segment, whi
h in turn in
reases the number ofsegment reads required.
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Figure 6: Auditing Overhead in S4 { This �gure showsthe impa
t on small �le performan
e 
aused by auditing in-
oming 
lient requests.5.1.5 Fundamental performan
e 
ostsThere are three fundamental performan
e 
ostsof self-se
uring storage: versioning, auditing, andgarbage 
olle
tion. Versioning 
an be a
hieved atvirtually no 
ost by 
ombining journal-based meta-data with the LFS stru
ture. Auditing 
reates asmall performan
e penalty of 1% to 3%, a

ordingto appli
ation ben
hmarks. The �nal performan
e
ost, garbage 
olle
tion, is more diÆ
ult to quantify.The extra overhead of S4 
leaning in 
omparison tostandard LFS 
leaning 
omes mainly from the dif-feren
e in utilized spa
e due to the history pool.The worst-
ase performan
e penalty for garbage 
ol-le
tion in S4 
an be estimated by 
omparing the
leaning overhead at two spa
e utilizations: thespa
e utilized by the a
tive set of obje
ts and thespa
e utilized by the a
tive set 
ombined with thehistory pool. For example, assume that the a
tiveset utilizes 60% of the drive's spa
e and the historypool another 20%. For PostMark, the 
leaning over-head is the di�eren
e between 
leaning performan
eand standard performan
e seen at a given spa
e uti-lization in Figure 5. For 60% utilization, the 
lean-ing overhead is 43%. For 80% utilization, it is 53%.Thus, in this example, the extra 
leaning overhead
aused by keeping the history pool is 10%.There are several possibilities for redu
ing 
leaneroverhead for all spa
e utilizations. With expe
teddete
tion windows ranging into the hundreds ofdays, it is likely that the history pool 
an be ex-tended until su
h a time that the drive be
omes idle.During idle time, the 
leaner 
an run with no observ-
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Figure 7: Proje
ted Dete
tion Window { The expe
teddete
tion window that 
ould be provided by utilizing 10GBof a modern disk drive. This 
onservative history pool would
onsume only 20% of a 50GB disk's total 
apa
ity. The base-line number represents the proje
ted number of days worth ofhistory information that 
an be maintained within this 10GBof spa
e. The gray regions show the proje
ted in
rease that
ross-version di�eren
ing would provide. The bla
k regionsshow the further in
rease expe
ted from using 
ompression inaddition to di�eren
ing.able overhead [2℄. Also, re
ent resear
h into te
h-nologies su
h as freeblo
k s
heduling o�er standardLFS 
leaning at almost no 
ost [18℄. This te
hnique
ould be extended for 
leaning in S4.5.2 Capa
ity RequirementsTo evaluate the size of the dete
tion window that
an be provided, three re
ent workload studies wereexamined. Figure 7 shows the results of approxi-mations based on worst-
ase write behavior. Spa-sojevi
 and Satyanarayanan's AFS tra
e study [32℄reports approximately 143MB per day of write traf-�
 per �le server. The AFS study was 
ondu
ted us-ing 70 servers (
onsisting of 32; 000 
ells) distributeda
ross the wide area, 
ontaining a total of 200GB ofdata. Based on this study, using just 20% of a mod-ern 50GB disk would yield over 70 days of historydata. Even if the writes 
onsume 1GB per day perserver, as was seen by Vogels' Windows NT �le us-age study [34℄, 10 days worth of history data 
an beprovided. The NT study 
onsisted of 45 ma
hinessplit into personal, shared, and administrative do-mains running workloads of s
ienti�
 pro
essing, de-velopment, and other administrative tasks. Santry,et al. [29℄ report a write data rate of 110MB perday. In this 
ase, over 90 days of data 
ould bekept. Their environment 
onsisted of a single �lesystem holding 15GB of data that was being used

by a dozen resear
hers for development.Mu
h work has been done in evaluating the eÆ
ien
yof di�eren
ing and 
ompression [3, 4, 5℄. To brie
yexplore the potential bene�ts for S4, its 
ode basewas retrieved from the CVS repository at a singlepoint ea
h day for a week. After 
ompiling the 
ode,both di�eren
ing and di�eren
ing with 
ompressionwere applied between ea
h tree and its dire
t neigh-bor in time using Xdelta [19, 20℄. After applyingdi�eren
ing, the spa
e eÆ
ien
y in
reased by 200%.Applying 
ompression added an additional 200% fora total spa
e eÆ
ien
y of 500%. These results are inline with previous work. Applying these estimates tothe above workloads indi
ates that a 10GB historypool 
an provide a dete
tion window of between 50and 470 days.6 Dis
ussionThis se
tion dis
usses several important impli
ationsof self-se
uring storage.Sele
tive versioning: There are data that userswould prefer not to have ba
ked up at all. The 
om-mon approa
h to this is to store them in dire
toriesknown to be skipped by the ba
kup system. Sin
eone of the goals of S4 is to allow re
overy of exploittools, it does not support designating obje
ts as non-versioned. A system may be 
on�gured with non-S4partitions to support sele
tive versioning. While thiswould provide a way to prevent versioning of tempo-rary �les and other non-
riti
al data, it would also
reate a lo
ation where an intruder 
ould temporar-ily store exploit tools without fear that they will bere
overed.Versioning vs. snapshots: Self-se
uring stor-age 
an be implemented with frequent 
opy-on-writesnapshots [11, 12, 17℄ instead of versioning, so longas snapshots are kept for the full dete
tion window.Although the audit log 
an still provide a re
ord ofwhat blo
ks are 
hanged, snapshots often will not al-low administrators to re
over short-lived �les (e.g.,exploit tools) or intermediate versions (e.g., systemlog �le updates). Also, legitimate 
hanges are onlyguaranteed to survive mali
ious a
tivity if they sur-vive to the next snapshot time. Of 
ourse, the po-tential s
ope of su
h problems 
an be redu
ed byshrinking the time between snapshots. The 
ompre-hensive versioning promoted in this paper representsthe natural end-point of su
h shrinking|every mod-i�
ation 
reates a new snapshot.Versioning �le systems vs. self-se
uring stor-age: Versioning �le systems ex
el at providing users
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with a safety net for re
overy from a

idents. Theymaintain old �le versions long after they would bere
laimed by the S4 system, but they provide lit-tle additional system se
urity. This is be
ause theyrely on the host's OS for se
urity and aggressivelyprune apparently insigni�
ant versions. By 
ombin-ing self-se
uring storage with long-term landmarkversioning [28℄, re
overy from users' a

idents 
ouldbe enhan
ed while also maintaining the bene�ts ofintrusion survival.Self-se
uring storage for databases: Mostdatabases log all 
hanges in order to prote
t internal
onsisten
y in the fa
e of system 
rashes. Some in-stitutions also retain these logs for long-term audit-ing purposes. All information needed to understandand re
over from mali
ious behavior 
an be kept, indatabase-spe
i�
 form, in these logs. Self-se
uringstorage 
an in
rease the post-intrusion re
overabil-ity of database systems in two ways: (1) by prevent-ing undete
table tampering with stored log re
ords,and (2) by preventing undete
table 
hanges to datathat bypass the log. After an intrusion, self-se
uringstorage allows a database system to verify its log'sintegrity and 
on�rm that all 
hanges are 
orre
tlyre
e
ted in the log|the database system 
an thensafely use its log for subsequent re
overy.Client-side 
a
he e�e
ts: In order to improve ef-�
ien
y, most 
lient systems use 
a
hes to minimizestorage laten
ies. This is at odds with the desireto have storage devi
es audit users' a

esses and
apture exploit tools. Client-side read 
a
hes hidedata dependen
y information that would otherwisebe available to the drive in the form of reads followedqui
kly by writes. However, this information 
ouldbe provided by 
lient systems as (questionable) hintsduring writes. Write 
a
hes 
ause a more seriousproblem when �les are 
reated then qui
kly deleted,thus never being sent to the drive. This 
ould 
ausediÆ
ulties with 
apturing exploit tools, sin
e theymay never be written to the drive. Although 
lient
a
he e�e
ts may obs
ure some of the a
tivity in the
lient system, data that are stored on a self-se
uringstorage devi
e are still 
ompletely prote
ted.Obje
t-based vs. blo
k-based storage: Imple-menting a self-se
uring storage devi
e with a blo
kinterfa
e adds several diÆ
ulties. Sin
e obje
ts aredesigned to 
ontain one data item (�le or dire
tory),enfor
ing a

ess 
ontrol at this level is mu
h moremanageable than attempting to assign permissionson a per-blo
k basis. In addition, maintaining ver-sions of obje
ts as a whole, rather than having to 
ol-le
t and 
orrelate individual blo
ks, simpli�es re
ov-ery tools and internal reorganization me
hanisms.

Multi-devi
e 
oordination: Multi-devi
e 
oordi-nation is ne
essary for operations su
h as stripingdata or implementing RAID a
ross multiple self-se
uring disks or �le servers. In addition to the 
o-ordination ne
essary to ensure that multiple 
opiesof data are syn
hronized, re
overy operations mustalso 
oordinate old versions. On the other hand,
lusters of self-se
uring storage devi
es 
ould main-tain a single history pool and balan
e the load ofversioning obje
ts. Note that a self-se
uring storagedevi
e 
ontaining several disks (e.g., a self-se
uringdisk array) does not have these issues. Additionally,it has the ability to keep old versions and 
urrentdata on separate disks.7 Related WorkSelf-se
uring storage and S4 build on many ideasfrom previous work. Perhaps the 
learest example isversioning: many versioned �le systems have helpedtheir users to re
over from mistakes [22, 10℄. Santry,et al., provide a good dis
ussion of te
hniques fortraversing versions and de
iding what to retain [29℄.S4's history pool 
orresponds to Elephant's \keepall" poli
y (during its dete
tion window), and it usesElephant's time-based a

ess. The primary advan-tage of S4 over su
h systems is that it has been par-titioned from 
lient operating systems. While this
reates another layer of abstra
tion, it adds to thesurvivability of the storage.A self-se
uring disk drive would be another instan
eof many re
ent \smart disk" systems [1, 8, 15, 26,35℄. All of these exploit the in
reasing 
omputationpower of su
h devi
es. Some also put these devi
eson networks and exploit an obje
t-based interfa
e.There is now an ANSI X3T10 (SCSI) working grouplooking to 
reate a new standard for obje
t-basedstorage devi
es. The S4 interfa
e is similar to these.The standard method of intrusion re
overy is to keepa periodi
 ba
kup of �les on trusted storage. Sev-eral �le systems simplify this pro
ess by allowing asnapshot to be taken of a �le system [11, 12, 17℄.This snapshot 
an then be ba
ked-up with standard�le system tools. Spiralog [13℄ uses a log-stru
tured�le system to allow for ba
kups to be made duringsystem operation by simply re
ording the entire logto tertiary storage. While these systems are e�e
tivein preventing the loss of long-existing 
riti
al data,the window of time in whi
h data 
an be destroyedor tampered with is mu
h larger than in S4|often24 hours or more. Also, these systems are generallyreliant upon a system administrator for operation,with a 
orresponding in
rease in 
ost and potential
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for human error. In addition, intrusion diagnosis isextremely diÆ
ult in su
h systems. Permanent �lestorage [25℄ provides an unlimited set of pun
ture-proof ba
kups over time. These systems are unlikelyto be
ome the �rst-line of storage be
ause of lengthya

ess times.S4 borrows on-disk data stru
tures from several sys-tems. Unlike Elephant's FFS-like layout [23℄, thedisk layout of S4 more 
losely resembles that of alog stru
tured �le system [27℄. Many �le systemsuse journaling to improve performan
e while main-taining disk 
onsisten
y [6, 31, 33℄. However, thesesystems delete the journal information on
e 
he
k-points ensure that the 
orresponding blo
ks are allon disk. S4's journal-based metadata persistentlystores metadata versions in a spa
e-eÆ
ient man-ner.8 Con
lusionsSelf-se
uring storage ensures data and audit log sur-vival in the presen
e of su

essful intrusions and even
ompromised host operating systems. Experimentswith the S4 prototype show that self-se
uring stor-age devi
es 
an a
hieve performan
e that is 
om-parable to existing storage applian
es. In addition,analysis of re
ent workload studies suggest that 
om-plete version histories 
an be kept for several weekson state-of-the-art disk drives.A
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